Classical Wave Description of Light



James Clerk Maxwell
* Related charges, currents, E-fields, and Mag-fields

* Unified Electricity and Magnetism into four equations
— Electric Fields from charges
— Electromagnetic Induction
* Electric fields from changing magnetic fields
— No magnetic monopoles (N/S pairs)
— Electromagnet

* Magnetic fields from moving charges (currents)

* Predicted traveling waves in Electric and Magnetic Fields (E-M waves) when
charges accelerate or currents change

* No medium needed — happens 1n “empty space”
— Ether theory (medium for E-M waves) has been disproved
* the Greeks 5th element



Maxwell’s Equations

Gauss’s Law

Faraday’s Law

No magnetic monopoles

Ampere’s law with
Maxwell’s correction
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E & M Waves

* C(lassical wave equation
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E-M Waves
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Changing E-fields
Accelerate a charge

or
change a current

Changing Mag-fields

Self-propagating E-M wave



Wave Nature of Light

* Some Properties:
— No medium needed (very strange)
speed = ¢ = 299792458 x 10° m/s C :j, f
— Transverse wave
* Polarization

— The E-field interacts in matter (electrons)
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Wave Nature of Light

c=Af
visible light\
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The Visible Spectrum

* White Light
— mixture of all colors
— ROY G. BIV
— long A to short A
— low fto high f
— low Energy to high

c=Af

0.7%x10°°=0.4%x10 °m or 700—400nm
Lnm=1%x10"m



Evidence of waves:

— Interference or Principle of Superposition

* Young’s Double Slit Experiment



Young's Double Slit Experiment

Two narrow slits — diffraction

Path difference = d sin 9




Superposition

Constructive interference Destructive interference




Globular Cluster

MO92 in Hercules



Globular Cluster
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Globular Cluster

500: ofeliar Lynamics in oouiar
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FiGure 6. Surface brightness profile of 47 Tuc from lingworth & Illingworth (1976). ‘Annuli’

47 Tuc D=5 kpc



Poynting Vector, S
* A vector pointing in the direction of light propagation.
—_ 1 —_ —_
S=—FEXBZB
Ho
* Magnitude 1s equal to the amount of energy per unit time that crosses a
unit area oriented perpendicular to the direction of propagation of the

wave

* Need to take a time average since wave vary harmonically with time (sin
and cosine functions)

— Average over one period: (S)= 2H —FE, B,
0

* This is for a particular frequency

— Need contributions from all frequencies to get the (bolometric) radiant
flux.

NOTE: Light carries both energy and momentum, but does not have a rest
mass.



Radiation Pressure

* Result of the momentum carried by the light.

— Depends on reflection or absorption (both could happen)

——3 Reflected Ray
Reflection:

~ 2<8>co0s’0

rad —

——» Absorbed Ray
P

C
Absorption:

1
p. = 1<S>cos O

C

* Important role in stability
of stars — equilibrium
with gravity

* May also significantly
SISO 11T 105 | -V ghare (R Al —»- Momentum imparted by reflection

- Mormentum im parted by absorption



Blackbodies

* All objects above absolute zero emit radiation
— Molecules and atoms are constantly in motion (thermal energy)
* Accelerating charges 2 E & M radiation
— Radiation (amount and type) will be temperature dependent
* Blackbody
— Absorbs all incident radiation (no reflection)
— Emits blackbody radiation, dependent on the objects temperature

* Stars and Planets are very close to being i1deal blackbodies




-]
()
<
Vo)
y—]
& =
= 1<
< o8
— —
| O ]
Q. o
& S
D 1S
- o —
p—
o O | .
= S ol
B - <
R -
1 &
QO o o
o e S 9
—
d hN -~
=y =
o v =
b L -
~ W 2 3 ik
Q o~ 4 7~
< I N >y
—
an S
| )
o
A
-]
f S
~ O Vo) <t g e\ — O

(|18, V, wo. s, 310 ,01) (1)'g




Wien's Displacement Law

Relates the surface temperature to the wavelength at the peak of the
spectrum

A, T=0290cmK

Helps explain the color of stars

Alternatively written as

A T= (5000 A)(5800 K)



Blackbody Emission

Surface temperature

5770 K
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Blackbody: Slmple Wien's Law

I 07%9 cm- KOCT

Spectral
Distribution
depends
on

1000 1500
Wavelength A (nm)




Stefan-Boltzmann Equation

Total energy depends on temperature

Empirically discovered by Stefan

Derived from first principles (thermo and E&M laws) by Boltzmann
Luminosity, L [ergs/sec]

L=c0AT

A = area of blackbody
T’ = Temperature in Kelvin
0 = Stefan-Boltzmann constant

E = emissivity, 0 < £< 1

& =1 is a perfect blackbody (usually assume this)



Stefan-Boltzmann Equation

For a spherical blackbody _of radius R the surface area 1s 4TIR%, so the
Luminosity 1s

L = A0T'= 4TR!OT

To get the radiant flux at the surface of the spherical blackbody, we divide
by the area, 4TIR’, so 2 4
4 4naR° 6T

£ 2

4R

At a known distance, d. from the BB, the radiant flux becomes
2 4 2
. 4R~ 0T — T4 R
2

4nd d
Since stars are not perfect blackbodies, the temperature 1s often called the
effective temperature T, (when € < 1)

—oT?

F




Spectral Blackbody: Distribution Definitions

u = Energy Density U ( A ) 4: B (T) u 1s 1n ergs/cm?

where B, = radiation emitted per unit time per unit area per unit
wavelength in the unit solid angle dQ

E = average energy/mode (IMPORTANT QUANTITY)
n(A) = # oscillation modes = 8TTA* (independent of cavity shape)

#modes = count the standing waves

boundary conditions, nodes at the walls (E field = 0)



Spectral Blackbody: Rayleigh-Jeans Equation

ST
(Boltzmann distribution) and n(A) = 8\~
k=1.38 x 102 J/K (Boltzmann’s constant)

(explodes for small A)

2000 4000

6000 A, nm



Spectral Blackbody: Planck’s Law

initially found empirically (trial and error!)

* (Quantize the E&M radiation (photons)

E =hv=hc/

where h = Planck’s Constant = 6.266 x 10¥ erg-s

— Minimum energy

* This 1s used in replacing the classical kT expression for the average

energy in a mode

E =nhv, n=0, 1, 2, 3
— Avoids the catastrophe — the entire hot object does not have

enough energy to emit one quanta of EM waves



Spectral Blackbody: Derivation of Planck’s Law

E
_E I
f(E) = o kT Eave — J'EAekT dE = kT
f(E,)= e = (he'A)
E_. :ZEnAekT S R
kT _1

where E ) =nhv

* Assumption of



Spectral Blackbody: Planck’s Law

initially found empirically (trial and error!)

* (Quantize the E&M radiation (photons)

E =hv=hc/

i
\

™~ Rayleigh-Jeans
law

(he ) (8m~)

u(A) = el A

law
A |

2000 4000
and n(A) = 8T\
* Energy of a photon: E =hc/A and ¢ = VA



Spectral Blackbody: Limits of Planck’s LaW ‘

u(A) = (hc/};c)/ggmﬂ
e —1

(or small energy E)

he/ A
oK =14 he/ A .
kT

u (7\ = o0 ) - (8 7T 7\._4) kT Rayleigh-Jeans Equation

Taylor's Series for small exponent

* Limit of Small A (or large energy E)
—hc/ A

M(A —>O) —>A_5€ K, 0




2he’ ) Planck’s Law

U Energy from a surface element.
B, Units:
3,2 "
2hv [ c #
W cm”-s-dQ-dA

B (N, T)=

B (v,T)=

B;(T)

dQ = sin® dO do




Planck’s Law

Observations: Radiant flux and apparent magnitude

Star Properties: Radius, temperature oy CZ / 15
Need to integrate over: b /1( r ) — 1 kT 1
— Area (sphere) €

— solid angle (from the flat infinitesimal surface element)

* Isotropic — no preferred direction

Monochromatic Luminosity

2n 7wl2
L,di=| | B, di|ldd cosd|isin® db dy|
p=0 6=0
4’ R° B, d) From A to A + d\



The Color Index

* M, or m, is at all wavelengths and 1s called the bolometric magnitude

* Monochromatic flux integrated over a wavelength range

* Standard filters for the UBV system (there are other systems)

— U is ultraviolet A, = 3650 A
A\ = 680 A

_ Bis blue A =4400 A
A\ =980 A

— V is visible A =5500 A

center

AN =890 A



The Color Index
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The Color Index

Knowing the distance, the absolute color magnitudes can be
determined, M, M,, M,.

d
m—M=)5log,,
10 pc
Apparent magnitudes are: U, B, and V (instead of m)
Color Indices | U— B= MU_ MB
— Independent of distance!
B—V=M,~M,

Smaller (B-V) is bluer
— Stellar magnitudes decrease with increasing brightness

Bolometric correction, BC:

BC=m,,=V=M, —M,
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Temperature of Stars

e Determined by type of em radiation

a BElue < (10,000 K] b Yedlow uh e 4 6,000 K C. Fedd star [5,000H ]

A000 10,000 15,000 50,000 A000 10000 15000 50,000 SO000 10,000 15,000 50,000
Whnelengt (4 Wiereten gh [ Waelen gh [ £

Peak in UV Peak in visible Peak in IR



The Color Index

* Sensitivity Functions, S(A) m,—m,=—2.5log,, Ll
0 2
U=-12.5log,, f F,§,di|+C, U = 0 for Vega determines C,
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Example 3.6 — Sirus

* Brightest star in the sky
U=-1.50,B=-1.46, V=-1.46
U-V=-0.04
B—-1V=0.00

Brightest at UV wavelengths, 7' = 9910 K:

_0.29em -K

_ -5 -7
mx = 0070 K =2.926X10" cm=2.926X10"" m=2926 4

A

Bolometric correction 1s: BC = -0.09, so its apparent bolometric
magnitude is  m,,,=V+BC=—1.46+(—0.09)=—1.55

(this 1s brighter than Vega)
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