Classical Wave Description of Light

James Clerk Maxwell

- Related charges, currents, E-fields, and Mag-fields
- Unified Electricity and Magnetism into <u>four</u> equations
 - Electric Fields from charges
 - Electromagnetic Induction
 - Electric fields from changing magnetic fields
 - No magnetic monopoles (N/S pairs)
 - Electromagnet
 - Magnetic fields from moving charges (currents)
- Predicted traveling waves in Electric and Magnetic Fields (E-M waves) when <u>charges accelerate</u> or currents change
- No medium needed happens in "empty space"
 - Ether theory (medium for E-M waves) has been disproved
 - the Greeks 5th element

Maxwell's Equations

• Gauss's Law

- Faraday's Law
- No magnetic monopoles
- Ampere's law with Maxwell's correction

$$\nabla \cdot \vec{E} = \frac{1}{\varepsilon_o} \rho$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

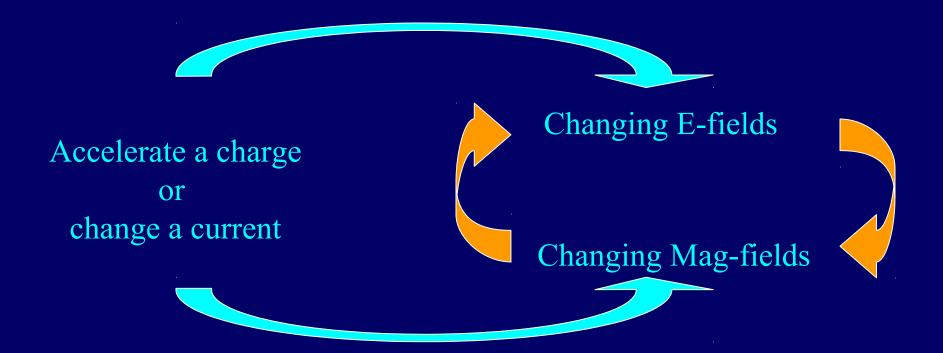
$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{B} = \mu_o \vec{J} + -\mu_o \varepsilon_o \frac{\partial \vec{E}}{\partial t}$$

E & M Waves

- Classical wave equation
 - $\nabla^2 f = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}$ $\nabla^2 \vec{E} = \mu_o \varepsilon_o \frac{\partial^2 \vec{E}}{\partial t^2}$ $\nabla^2 \vec{B} = \mu_o \varepsilon_o \frac{\partial^2 \vec{B}}{\partial t^2}$ $v = \frac{1}{\sqrt{\mu_{o} \varepsilon_{o}}} = 2.99792458 \times 10^{8} ms$
- From Maxwell's Eqs

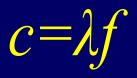
E-M Waves

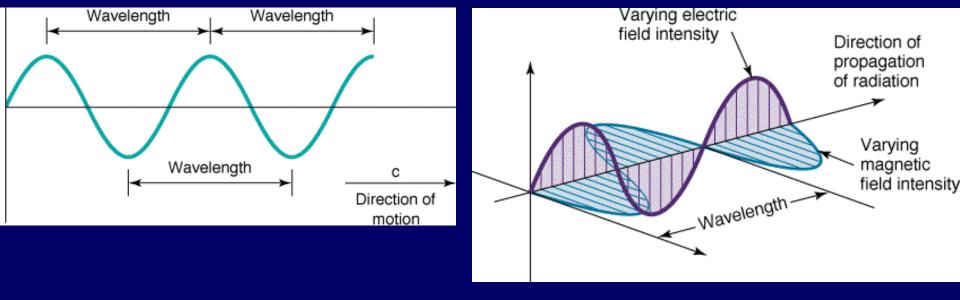


Self-propagating E-M wave

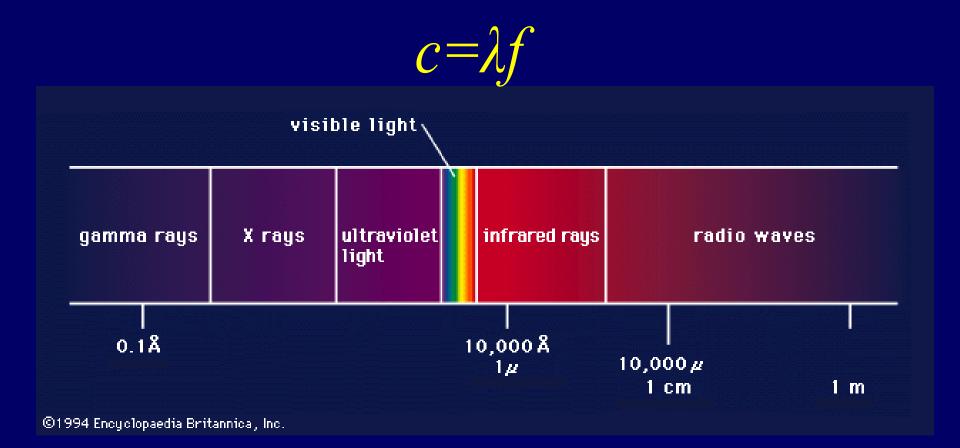
Wave Nature of Light

- Some Properties:
 - No medium needed (very strange) speed = $c = 299792458 \times 10^8$ m/s
 - Transverse wave
 - Polarization
 - The E-field interacts in matter (electrons)



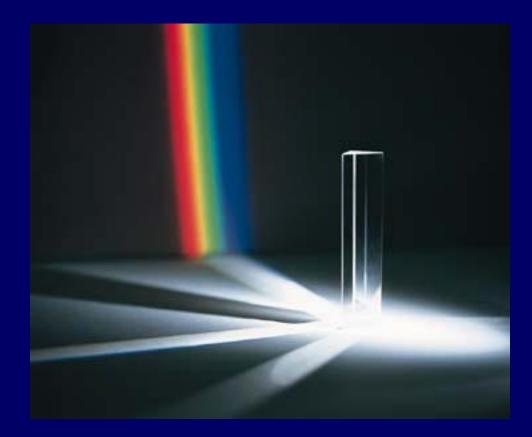


Wave Nature of Light



The Visible Spectrum

- White Light
 - mixture of all colors
 - ROY G. BIV
 - $\log \lambda$ to short λ
 - $\log f$ to high f
 - low Energy to high



$$C = \lambda f$$

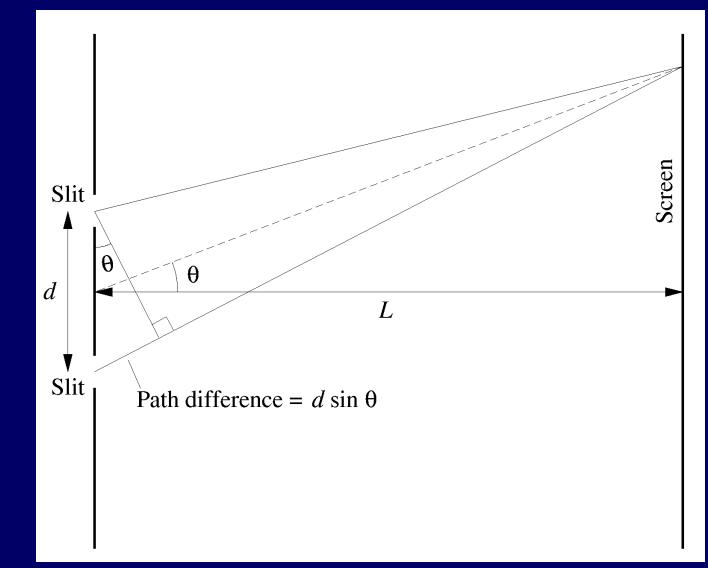
0.7×10⁻⁶-0.4×10⁻⁶ m or 700-400 nm
1 nm=1×10⁻⁹ m

Evidence of waves:

- Interference or Principle of Superposition
 - Young's Double Slit Experiment

Young's Double Slit Experiment

Two narrow slits -> diffraction

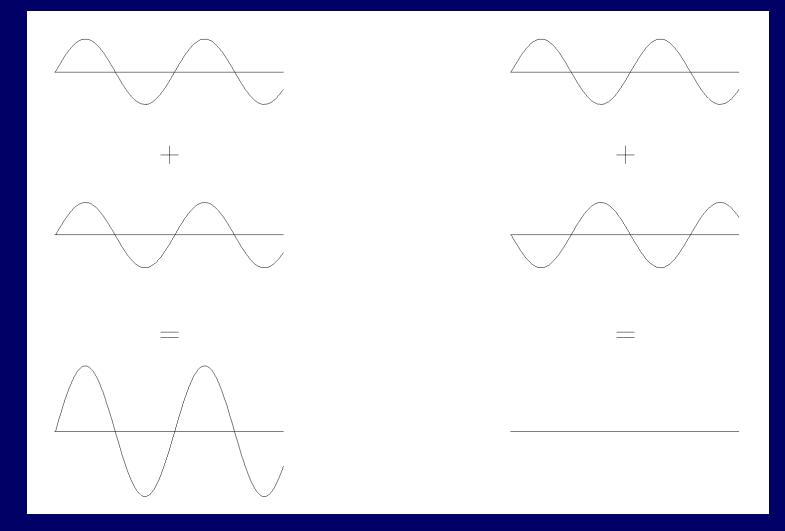


 $\Gamma >> q$

Superposition

Constructive interference

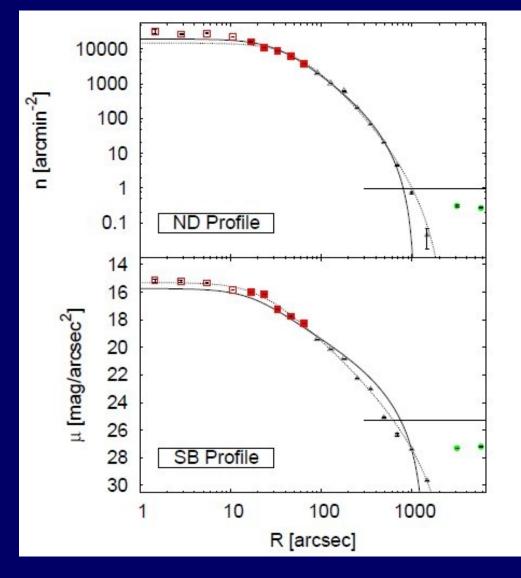
Destructive interference



Globular Cluster

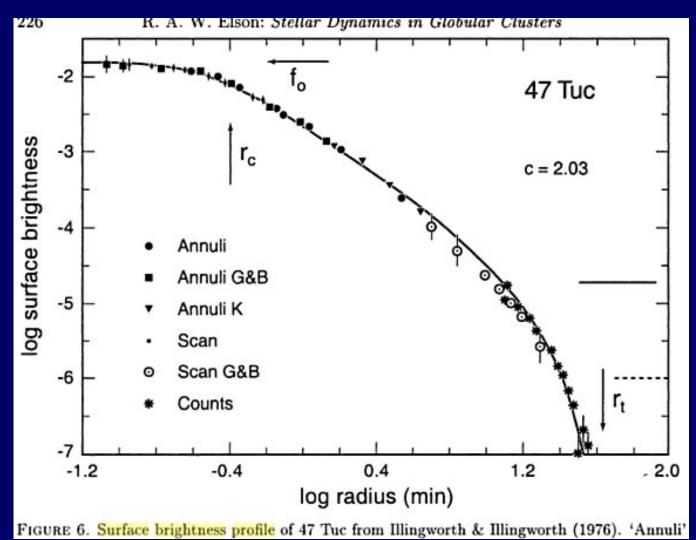
M92 in Hercules

Globular Cluster



M92 in Hercules

Globular Cluster



47 Tuc D=5 kpc

Poynting Vector, S

• A vector pointing in the direction of light propagation.

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

- Magnitude is equal to the amount of energy per unit time that crosses a unit area oriented perpendicular to the direction of propagation of the wave
- Need to take a time average since wave vary harmonically with time (sin and cosine functions)
 - Average over one period:

 \bullet

$$\langle S \rangle = \frac{1}{2\mu_0} E_0 B_0$$

Need contributions from all frequencies to get the (bolometric) radiant flux.

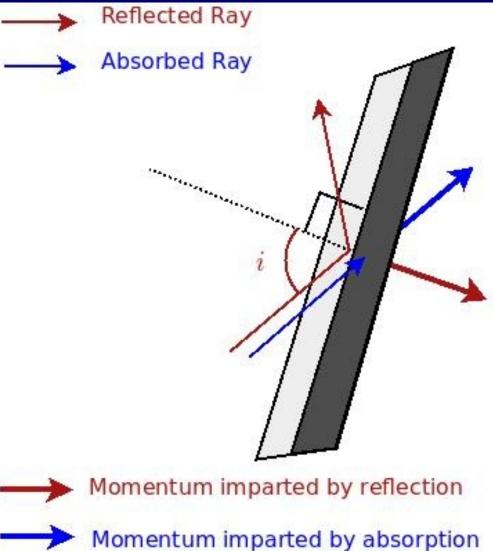
NOTE: Light carries both energy and momentum, but does not have a rest mass.

Radiation Pressure

- Result of the momentum carried by the light.
 - Depends on reflection or absorption (both could happen)

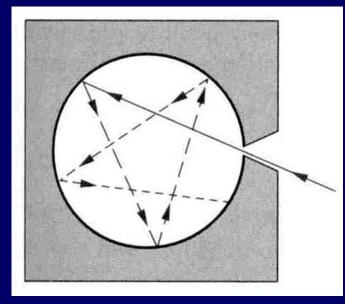
Reflection: $P_{rad} = \frac{2 < S > \cos^2 \theta}{c}$ Absorption: $P_{rad} = \frac{1 < S > \cos^1 \theta}{c}$

- Important role in stability of stars – equilibrium with gravity
- May also significantly effect interstellar "dust"

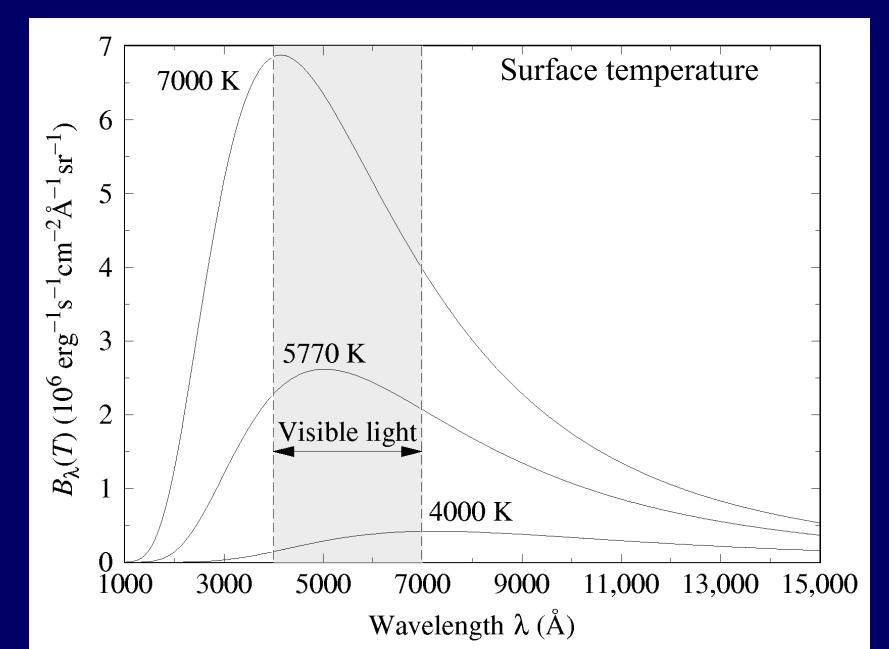


Blackbodies

- All objects above absolute zero emit radiation
 - Molecules and atoms are constantly in motion (thermal energy)
 - Accelerating charges \rightarrow E & M radiation
 - Radiation (amount and type) will be temperature dependent
- Blackbody
 - Absorbs all incident radiation (no reflection)
 - Emits blackbody radiation, dependent on the objects temperature
- Stars and Planets are very close to being ideal blackbodies



Blackbody emission



Wien's Displacement Law

• Relates the surface temperature to the wavelength at the peak of the spectrum

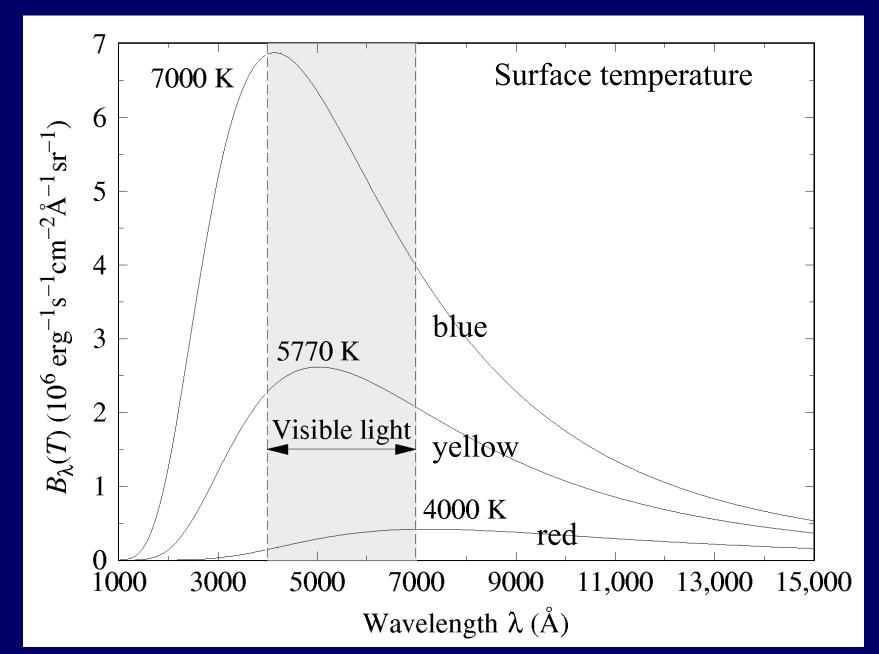
$$\lambda_{\text{max}} T = 0.290 \text{ cm K}$$

• Helps explain the color of stars

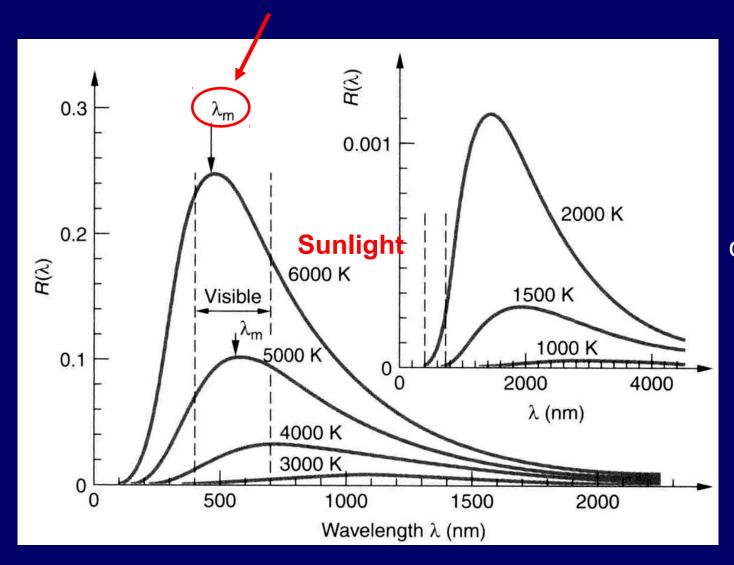
• Alternatively written as

$$\lambda_{\text{max}} T = (5000 \text{ Å})(5800 \text{ K})$$

Blackbody Emission



Blackbody: Simple Wien's Law $\lambda_{\max} = \frac{0.29}{T} cm \cdot K \propto \frac{1}{T}$



Spectral Distribution depends <u>only</u> on <u>Temperature</u>

Stefan-Boltzmann Equation

- Total energy depends on temperature
- Empirically discovered by Stefan
- Derived from first principles (thermo and E&M laws) by Boltzmann
- Luminosity, *L* [ergs/sec]

$$L = \varepsilon \, \sigma A \, T^4$$

A =area of blackbody

- T = Temperature in Kelvin
- σ = Stefan-Boltzmann constant
- $\mathcal{E} = \text{emissivity}, 0 \leq \mathcal{E} \leq 1$

 $\mathcal{E} = 1$ is a perfect blackbody (usually assume this)

Stefan-Boltzmann Equation

• For a spherical blackbody <u>of radius *R*</u> the surface area is $4\pi R^2$, so the Luminosity is

$$L = A\sigma T^{\sharp} = 4\pi R^2 \sigma T^{\sharp}$$

- To get the <u>radiant flux</u> at the <u>surface</u> of the spherical blackbody, we divide by the area, $4\pi R^2$, so $F = \frac{4\pi R^2 \sigma T^4}{4\pi R^2} = \sigma T^4$
- At a known <u>distance</u>, <u>d</u>, from the BB, the radiant flux becomes

$$F = \frac{4\pi R^2 \sigma T^4}{4\pi d^2} = \sigma T^4 \left(\frac{R}{d}\right)^2$$

• Since stars are not perfect blackbodies, the temperature is often called the *effective temperature* T_{e} (when $\varepsilon < 1$)

Spectral Blackbody: Distribution Definitions

$$u = \text{Energy Density} \quad u(\lambda) = \frac{4\pi}{c} B_{\lambda}(T)$$

u is in ergs/cm³

where B_{λ} = radiation emitted per unit time per unit area per unit wavelength in the unit solid angle $d\Omega$

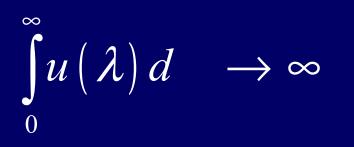
Energy Density $u(\lambda) = E_{ave} n()$ Distribution Function

 E_{ave} = average energy/mode (IMPORTANT QUANTITY) $n(\lambda) = \#$ oscillation modes = $8\pi \lambda^{-4}$ (independent of cavity shape) #modes \rightarrow count the standing waves boundary conditions, nodes at the walls (E field = 0)

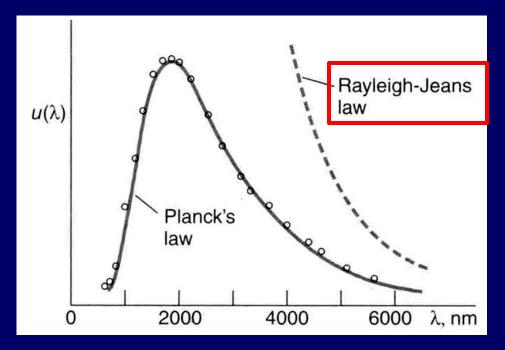
Spectral Blackbody: Rayleigh-Jeans Equation

$$u(\lambda) = kT \frac{8\pi}{\lambda^4}$$

 $E_{ave} = kT$ (Boltzmann distribution) and $n(\lambda) = 8\pi\lambda^{-4}$ $k = 1.38 \times 10^{-23}$ J/K (Boltzmann's constant)



 $\frac{UV Catastrophe!}{(explodes for small <math>\lambda)}$



Spectral Blackbody: Planck's Law

- Planck's Law initially found empirically (trial and error!)
- Quantize the E&M radiation (photons)
 - Minimum energy

$$E_v = hv = hc/\lambda$$

where $h = Planck's Constant = 6.266 \times 10^{-27} erg \cdot s$

• This is used in replacing the classical *kT* expression for the average energy in a mode

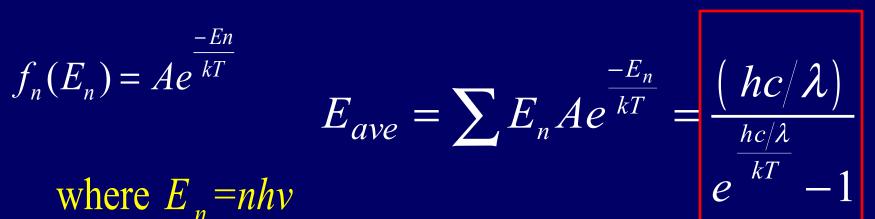
$$E_{v} = nhv, n = 0, 1, 2, 3$$

 Avoids the catastrophe – the entire hot object does not have enough energy to emit one quanta of EM waves Spectral Blackbody: Derivation of Planck's Law

• OLD (Classical from Boltzmann/ Raleigh-Jeans)

$$f(E) = Ae^{\frac{-E}{kT}} \qquad E_{ave} = \int EAe^{\frac{-E}{kT}} dE = kT$$

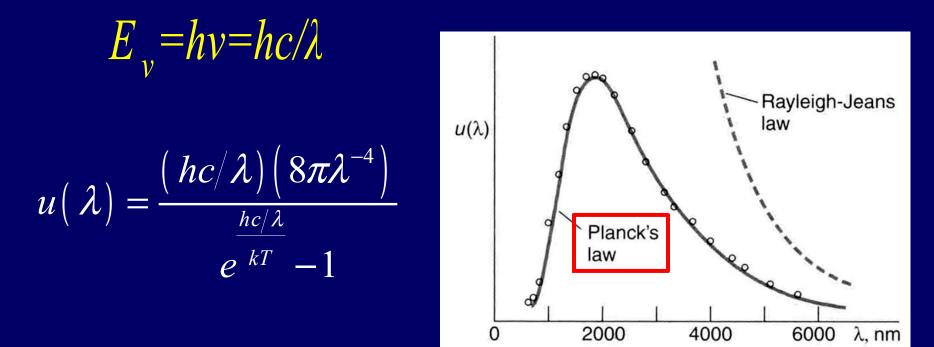
• **NEW** (Quantum from Planck)



Assumption of <u>Quantization is CRITICAL</u>!

Spectral Blackbody: Planck's Law

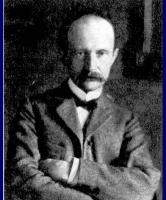
- Planck's Law initially found empirically (trial and error!)
- Quantize the E&M radiation (photons)



- $E_{ave} = (hv)[exp(hv/kT) 1]^{-1}$ and $n(\lambda) = 8\pi\lambda^{-4}$
- Energy of a photon: $\mathbf{E} = \mathbf{hc}/\lambda$ and $\mathbf{c} = \mathbf{v}\lambda$

Spectral Blackbody: Limits of Planck's Law $u(\lambda) = rac{(hc/\lambda)(8\pi\lambda^{-4})}{hc/\lambda}$ $e^{kT} - 1$

Limit of Large λ (or small energy E)



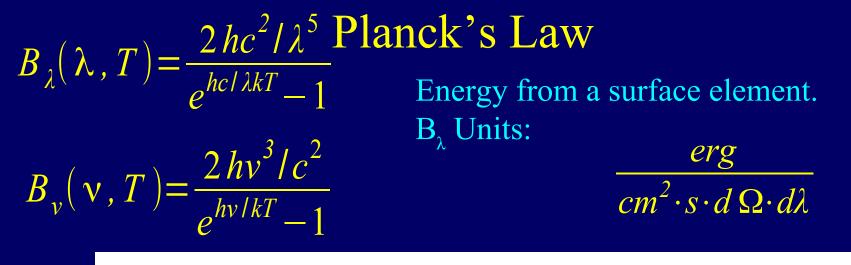
 $e^{\frac{hc/\lambda}{kT}} \approx 1 + \frac{hc/\lambda}{kT} + \dots$

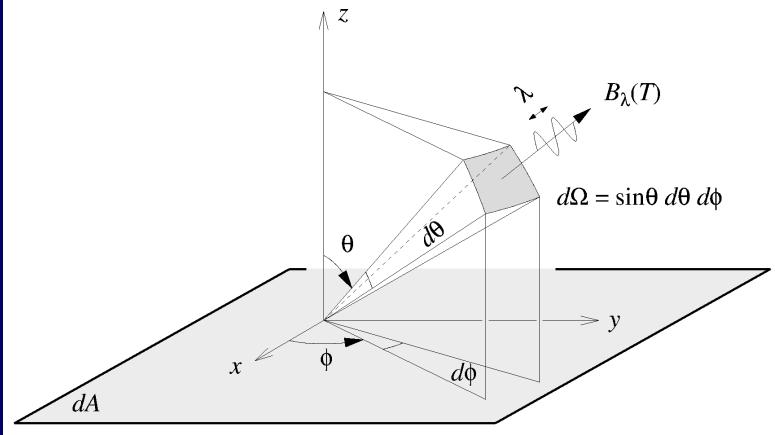
Taylor's Series for small exponent

 $u(\lambda \rightarrow \infty) \rightarrow (8\pi\lambda^{-4})kT$ **Rayleigh-Jeans** Equation

Limit of <u>Small λ </u> (or large energy E)

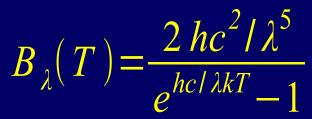
$$u(\lambda \to 0) \to \lambda^{-5} e^{\frac{-hc/\lambda}{kT}} \to 0$$

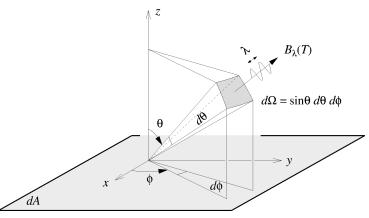




Planck's Law

- Observations: Radiant flux and apparent magnitude
- Star Properties: Radius, temperature
- Need to integrate over:
 - Area (sphere)
 - solid angle (from the *flat* infinitesimal surface element)
 - Isotropic no preferred direction
- Monochromatic Luminosity





 $L_{\lambda} d\lambda = \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi/2} (B_{\lambda} d\lambda) (dA \cos \theta) (\sin \theta d\theta d\varphi)$ $4\pi^{2} R^{2} B_{\lambda} d\lambda \qquad \text{From } \lambda \text{ to } \lambda + d\lambda$

- M_{bol} or m_{bol} is at all wavelengths and is called the bolometric magnitude
- Monochromatic flux integrated over a wavelength range
- Standard filters for the UBV system (there are other systems)

- U is ultraviolet
$$\lambda_{center} = 3650 \text{ Å}$$

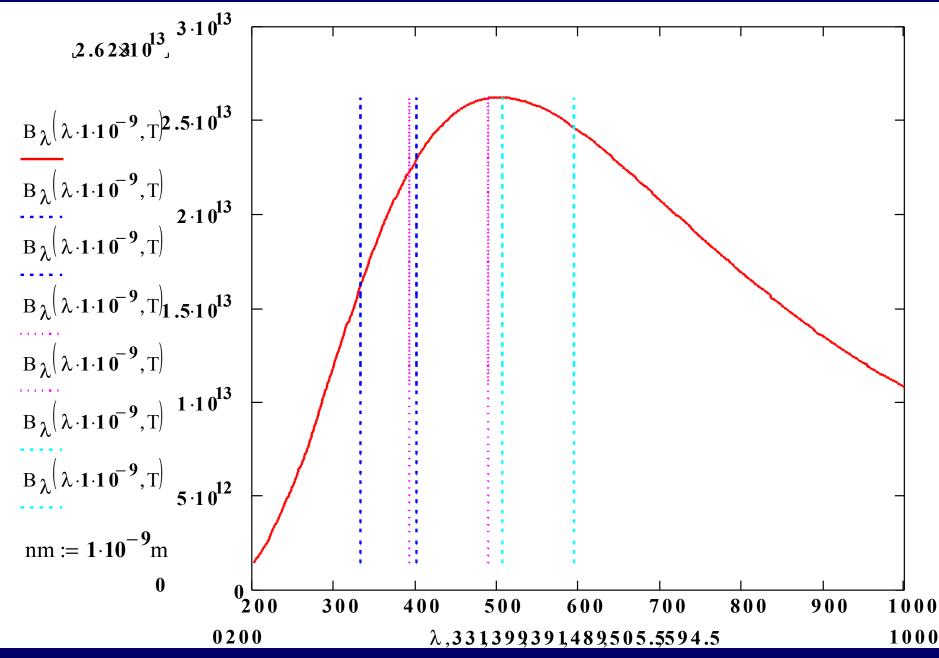
 $\Delta \lambda = 680 \text{ Å}$

– B is blue

$$\lambda_{ ext{center}} = 4400 ext{ \AA}$$
 $\Delta\lambda = 980 ext{ \AA}$

– V is visible

 $\lambda_{ ext{center}} = 5500 ext{ \AA}$ $\Delta \lambda = 890 ext{ \AA}$



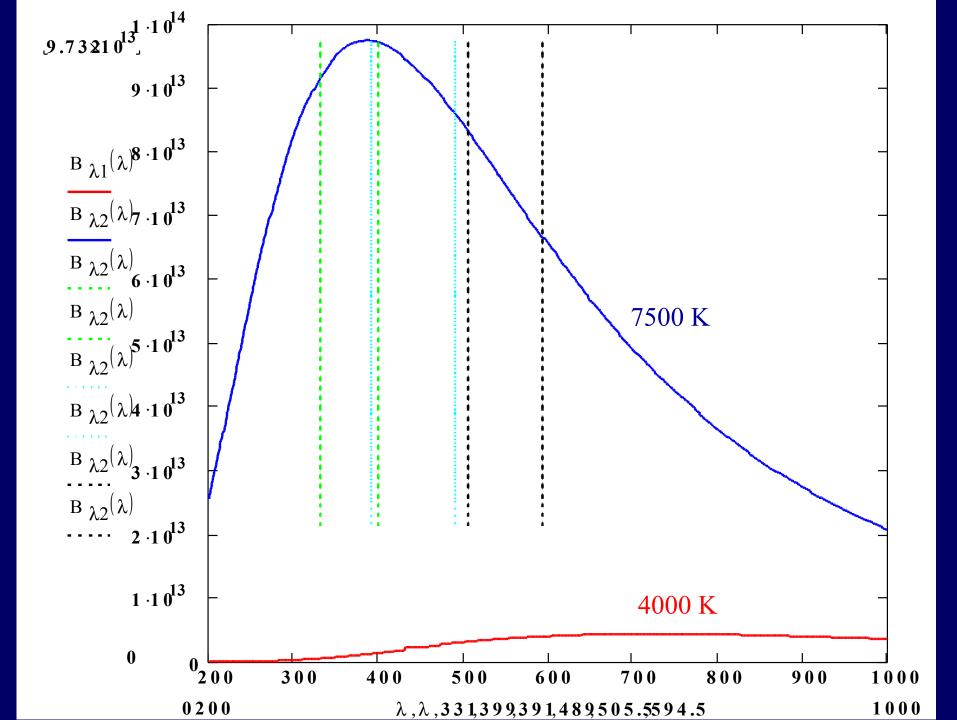
- Knowing the distance, the absolute color magnitudes can be determined, M_U , M_B , M_V . $m - M = 5\log_{10}\left(\frac{d}{10 \ pc}\right)$
- Apparent magnitudes are: U, B, and V (instead of *m*)
- Color Indices
 - Independent of distance!

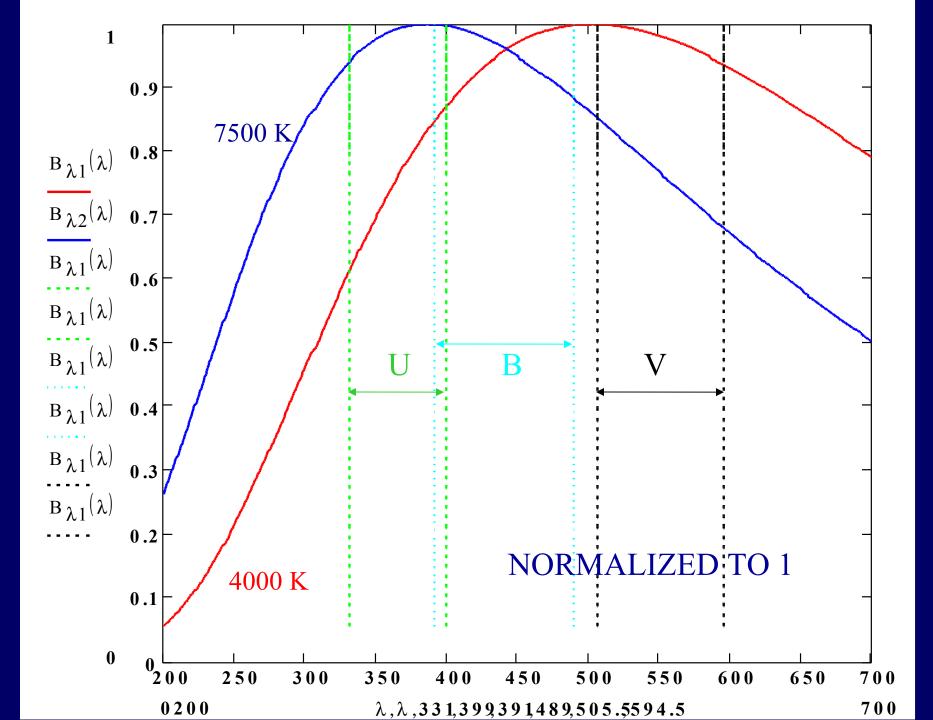
$$U - B = M_U - M_B$$

$$B - V = M_B - M_V$$

- Smaller (B-V) is bluer
 - Stellar magnitudes decrease with increasing brightness
- Bolometric correction, BC:

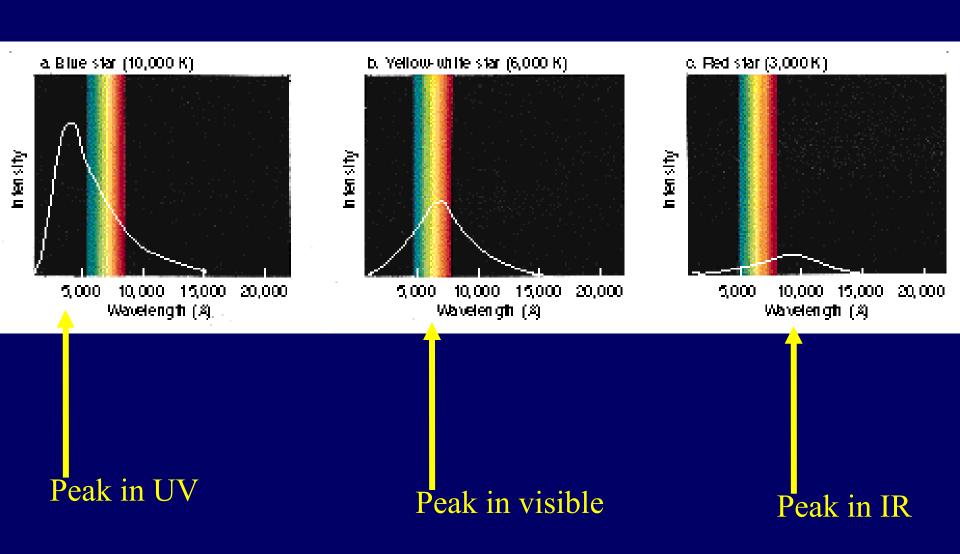
$$BC=m_{bol}-V=M_{bol}-M_{V}$$





Temperature of Stars

• Determined by type of em radiation

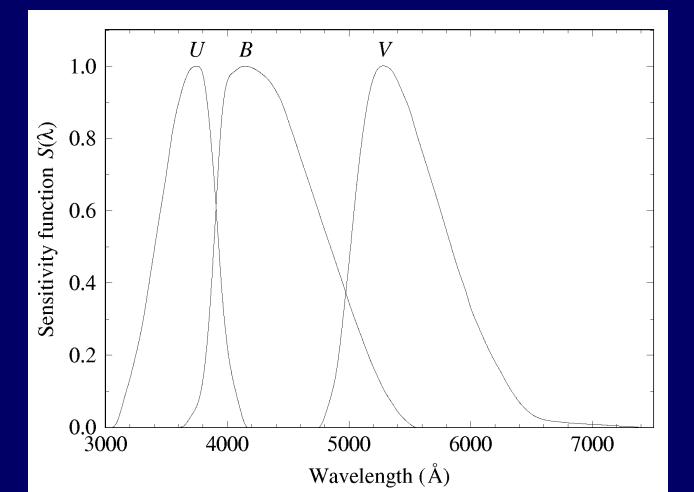


• Sensitivity Functions, $S(\lambda)$

$$m_1 - m_2 = -2.5 \log_{10} \left(\frac{F_1}{F_2} \right)$$

 $U = -2.5 \log_{10} \left(\int_{0}^{\infty} F_{\lambda} S_{U} d\lambda \right) + C_{U}$

$$U = 0$$
 for Vega determines C_U



Example 3.6 – Sirus

• Brightest star in the sky

U = -1.50, B = -1.46, V = -1.46

- U V = -0.04
- B V = 0.00

Brightest at UV wavelengths, $T_e = 9910$ K: $\lambda_{\text{max}} = \frac{0.29 \text{ cm} \cdot K}{9910 \text{ K}} = 2.926 \times 10^{-5} \text{ cm} = 2.926 \times 10^{-7} \text{ m} = 2926 \text{ Å}$

Bolometric correction is: BC = -0.09, so its apparent bolometric magnitude is $m_{bol} = V + BC = -1.46 + (-0.09) = -1.55$

(this is brighter than Vega)