
Classical Wave Description of Light



James Clerk Maxwell
• Related charges, currents, E-fields, and Mag-fields

• Unified Electricity and Magnetism into four equations

– Electric Fields from charges

– Electromagnetic Induction

• Electric fields from changing magnetic fields

– No magnetic monopoles (N/S pairs) 

– Electromagnet

• Magnetic fields from moving charges (currents)

• Predicted traveling waves in Electric and Magnetic Fields  (E-M waves) when 
charges accelerate or currents change

• No medium needed – happens in “empty space”

– Ether theory (medium for E-M waves) has been disproved

• the Greeks 5th element



Maxwell’s Equations

• Gauss’s Law

• Faraday’s Law

• No magnetic monopoles

• Ampere’s law with 
Maxwell’s correction

∇⋅E⃗=
1
ε o

ρ

∇× E⃗=−
∂ B⃗
∂ t

∇⋅B⃗=0

∇× B⃗ =μo J⃗ +−μo ε o
∂ E⃗
∂ t



E & M Waves
• Classical wave equation

• From Maxwell’s Eqs

∇2 f=
1
v2

o

∂2 f
∂ t2

∇2 E⃗ =μo εo
∂2 E⃗

∂ t2

∇2 B⃗ =μo ε o
∂

2 B⃗
∂ t2

v=
1

√ μo ε o

=2 . 99792458×108 ms



E-M Waves

Accelerate a charge
or 

change a current

Changing E-fields

Changing Mag-fields

Self-propagating E-M wave



Wave Nature of Light
• Some Properties:

– No medium needed (very strange)

speed = c = 299792458 × 108 m/s

– Transverse wave

• Polarization

– The E-field interacts in matter (electrons)

c=λf



Wave Nature of Light

c=λf



The Visible Spectrum
• White Light

– mixture of all colors

– ROY G. BIV

– long λ to short λ
– low f to high f

– low Energy to high

c=λf
0 . 7×10−6

−0. 4×10−6 m 700−400 nm

1nm=1×10−9 m

or



Evidence of waves:
– Interference or Principle of Superposition

• Young’s Double Slit Experiment



Young's Double Slit Experiment

Two narrow slits –> diffraction

L >> d



Superposition

Constructive interference Destructive interference



Globular Cluster

M92 in Hercules



Globular Cluster

M92 in Hercules



Globular Cluster

47 Tuc   D=5 kpc



Poynting Vector, S
• A vector pointing in the direction of light propagation.

• Magnitude is equal to the amount of energy per unit time that crosses a 
unit area oriented perpendicular to the direction of propagation of the 
wave

• Need to take a time average since wave vary harmonically with time (sin 
and cosine functions)

– Average over one period:

• This is for a particular frequency 

– Need contributions from all frequencies to get the (bolometric) radiant 
flux.

S⃗=
1
μ0

E⃗× B⃗

NOTE: Light carries both energy and momentum, but does not have a rest 
mass.

〈S 〉=
1

2μ0

E0 B0



Radiation Pressure
• Result of the momentum carried by the light.

– Depends on reflection or absorption (both could happen)

• Important role in stability 
of stars – equilibrium 
with gravity

• May also significantly 
effect interstellar “dust”

P rad=
2<S >cos2 θ

c

P rad=
1<S>cos1

θ
c

Reflection:

Absorption:



Blackbodies
• All objects above absolute zero emit radiation

– Molecules and atoms are constantly in motion (thermal energy)

• Accelerating charges  E & M radiation

– Radiation (amount and type) will be temperature dependent

• Blackbody

– Absorbs all incident radiation (no reflection)

– Emits blackbody radiation, dependent on the objects temperature

• Stars and Planets are very close to being ideal blackbodies



Blackbody emission

Surface temperature



Wien's Displacement Law
• Relates the surface temperature to the wavelength at the peak of the 

spectrum

λmax T = 0.290 cm K

• Helps explain the color of stars

• Alternatively written as

λmax T = (5000 Å)(5800 K)



Blackbody Emission

Surface temperature

blue

yellow

red



Blackbody:  Simple Wien's Law

Spectral 
Distribution 

depends only 
on TemperatureSunlight

λmax=
0 . 29

T
cm⋅K∝

1
T



Stefan-Boltzmann Equation
• Total energy depends on temperature
• Empirically discovered by Stefan
• Derived from first principles (thermo and E&M laws) by Boltzmann
• Luminosity, L [ergs/sec]

      L = ε σ A T4

A = area of blackbody
T = Temperature in Kelvin
σ = Stefan-Boltzmann constant

ε = emissivity, 0 ≤ ε ≤ 1

ε = 1 is a perfect blackbody (usually assume this)



Stefan-Boltzmann Equation
• For a spherical blackbody  of radius R the surface area is 4πR2, so the 

Luminosity is

L = AσT4 = 4πR2σT4

• To get the radiant flux at the surface of the spherical blackbody, we divide 
by the area, 4πR2, so

• At a known distance, d, from the BB, the radiant flux becomes

• Since stars are not perfect blackbodies, the temperature is often called the 
effective temperature Te  (when ε < 1)

F=
4πR2 σT 4

4πR2
=σT 4

F=
4πR2 σT 4

4πd2
=σT 4 ( R

d )
2



Spectral Blackbody: Distribution Definitions

where Bλ =  radiation emitted per unit time per unit area per unit 
wavelength in the unit solid angle dΩ

 

Energy Density 
Distribution Function

( ) ( )aveu E nλλ =

Eave = average energy/mode (IMPORTANT QUANTITY)

n(λ) = # oscillation modes = 8π λ–4 (independent of cavity shape)

#modes  count the standing waves

boundary conditions, nodes at the walls (E field = 0)

u ( λ )=
4π
c

Bλ (T ) u is in ergs/cm3u = Energy Density



Spectral Blackbody: Rayleigh-Jeans Equation

Eave = kT (Boltzmann distribution) and  n(λ) = 8πλ–4 

k = 1.38 x 10-23 J/K (Boltzmann’s constant)

( )
0

u dλλ
∞

→ ∞∫

UV Catastrophe!
(explodes for small λ)

u ( λ ) =kT
8π

λ4



Spectral Blackbody:  Planck’s Law
• Planck’s Law initially found empirically (trial and error!)

• Quantize the E&M radiation (photons)

– Minimum energy

where h = Planck’s Constant = 6.266 x 10-27 erg·s

• This is used in replacing the classical kT expression for the average 

energy in a mode

– Avoids the catastrophe – the entire hot object does not have 

enough energy to emit one quanta of EM waves

E v=hv=hc/λ

E v=nhv, n=0, 1, 2, 3



Spectral Blackbody: Derivation of Planck’s Law

• OLD (Classical from Boltzmann/ Raleigh-Jeans)

( )
E

kTf E Ae

−

=

E

kT
aveE EAe dE kT

−

= =∫

( )
En

kT
n nf E Ae

−

= ( )

1

nE

kT
n hc

kT

ave
hc

E E Ae

e
λ

λ−

= =
−

∑

• NEW (Quantum from Planck)

• Assumption of Quantization is CRITICAL!

where E n =nhv



Spectral Blackbody:  Planck’s Law
• Planck’s Law initially found empirically (trial and error!)

• Quantize the E&M radiation (photons)

( ) ( ) ( )48

1
hc

kT

hc
u

e
λ

λ πλ
λ

−

=
−

• Eave = (hν)[exp(hν/kT) – 1] –1 and  n(λ) = 8πλ–4 

• Energy of a photon:  E = hc/λ   and  c = νλ 

E v=hv=hc/λ



Spectral Blackbody:  Limits of Planck’s Law

• Limit of Large λ (or small energy E)

1 ...
hc

kT
hc

e
kT

λ λ≈ + + Taylor’s Series for small exponent

( )
/

50 0
hc

kTu e
λ

λ λ
−

−→ → →

Rayleigh-Jeans Equation

• Limit of Small λ  (or large energy E)

( ) ( ) ( )48

1
hc

kT

hc
u

e
λ

λ πλ
λ

−

=
−

u (λ→∞)→(8πλ−4) kT



Planck’s Law
B λ( λ , T )=

2 hc2
/ λ5

ehc / λkT−1 Energy from a surface element.
B

λ
 Units: 

erg

cm2⋅s⋅d Ω⋅dλBν( ν , T )=
2 hv3

/c2

ehv /kT −1



Planck’s Law
• Observations: Radiant flux and apparent magnitude
• Star Properties: Radius, temperature

• Need to integrate over:
– Area (sphere)
– solid angle (from the flat infinitesimal surface element)

• Isotropic – no preferred direction

• Monochromatic Luminosity

B λ(T )=
2 hc2

/ λ5

ehc / λkT−1

L λ dλ= ∫
φ= 0

2π

∫
θ=0

π /2

( Bλ dλ ) ( dA cosθ ) (sin θ dθ dφ )

4π2 R2 Bλ dλ From λ to λ + dλ



The Color Index
• Mbol or mbol is at all wavelengths and is called the bolometric magnitude

• Monochromatic flux integrated over a wavelength range
• Standard filters for the UBV system (there are other systems)

– U is ultraviolet  λcenter = 3650 Å

     ∆λ = 680 Å

– B is blue  λcenter = 4400 Å

     ∆λ = 980 Å

– V is visible  λcenter = 5500 Å

     ∆λ = 890 Å



The Color Index

2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
0

5 .1 0
12

1 .1 0
13

1 .5.1 013

2 .1 013

2 .5.1 0
13

3 .1 013

2 .6 2 31 0
13×

0

B λ λ 1⋅ 1 0 9−⋅ T,( )

B λ λ 1⋅ 1 0
9−⋅ T,( )

B λ λ 1⋅ 1 0 9−⋅ T,( )

B λ λ 1⋅ 1 0 9−⋅ T,( )

B λ λ 1⋅ 1 0
9−⋅ T,( )

B λ λ 1⋅ 1 0 9−⋅ T,( )

B λ λ 1⋅ 1 0 9−⋅ T,( )

1 0 0 00 2 0 0 λ 3 3 1, 3 9 9, 3 9 1, 4 8 9, 5 0 5 .5, 5 9 4 .5,

nm 1 10 9−⋅ m:=



The Color Index
• Knowing the distance, the absolute color magnitudes can be 

determined, MU, MB, MV.

• Apparent magnitudes are: U, B, and V (instead of m)
• Color Indices

– Independent of distance!

• Smaller (B-V) is bluer
– Stellar magnitudes decrease with increasing brightness

• Bolometric correction, BC:

m−M= 5log10( d
10 pc )

U−B=M U−M B

B−V=M B−M V

BC=mbol−V=M bol−M V
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Temperature of Stars
• Determined by type of em radiation

Peak in UV Peak in visible Peak in IR



The Color Index
• Sensitivity Functions, S(λ) m1−m2=−2 .5log10( F 1

F 2
)

U=−2 .5log10(∫
0

∞

F λ S U dλ)+CU U = 0 for Vega determines CU



Example 3.6 – Sirus
• Brightest star in the sky

U = -1.50, B = -1.46, V = -1.46

U – V = -0.04

B – V = 0.00

Brightest at UV wavelengths, Te = 9910 K:

Bolometric correction is: BC = -0.09, so its apparent bolometric 
magnitude is

(this is brighter than Vega)

λmax=
0 .29 cm⋅K
9910 K

=2 .926×10−5 cm=2 .926×10−7 m= 2926 Å

mbol=V+BC=−1. 46+(−0 .09 )=−1 . 55
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