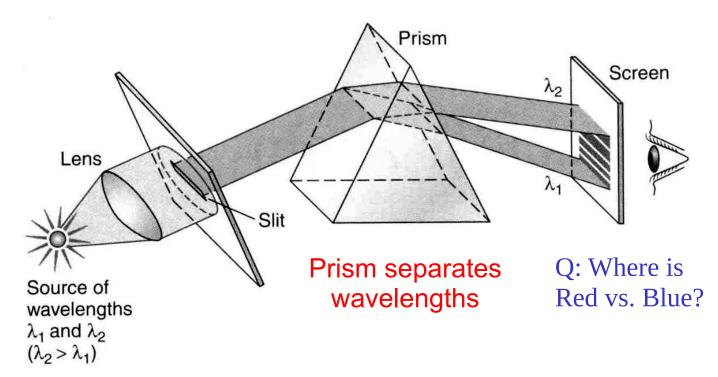
The Interaction of Light and Matter

Outline

- (1) Motivation: Why spectral lines?
 - the Birth of Spectroscopy
 - Kirchoff's Laws
- (2) Photons the particle nature of light
 - Blackbody radiation (Planck introduces quantum of light)
 - Photoelectric Effect
 - Compton Scattering
- (3) The Bohr Model of the Atom
 - a theory to describe spectral lines,
- (4) Quantum Mechanics and the Wave-Particle Duality (SKIP on ExamI)
 - De Broglie wavelength
 - Schrodinger's probability waves.

Spectroscopy - history

- Trogg (50 million BC) rainbow
- Newton (1642-1727) decomposes light into spectrum and back again
- W. Herschel (1800) discovers infrared
- J. W. Ritter (1801) discovers ultraviolet
- W. Wollaston (1802) discovers absorption lines in solar spectrum



Spectroscopy - history

- J. Herschel, Wheatstone, Alter, Talbot and Angstrom studied spectra of terrestrial things (flames, arcs and sparks) ~1810
- Joseph Fraunhofer
 - Cataloged ~475 dark lines of the solar spectrum by 1814
 - Identifies sodium in the Sun from flame spectra in the lab!
 - Looks at other stars (connects telescope to spectroscope)
- Foucault (1848) sees absorption lines in sodium flame with bright arc behind it.

There was no accepted explanation for the absorption lines. *New physics* needed!

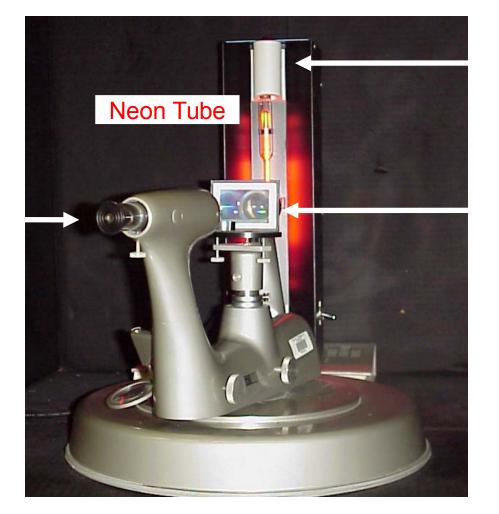
Kirchhoff's laws (1859):

Kirchhoff worked with Bunsen on flame spectra

Developed a prism spectroscope

- Hot solid or dense gas, \rightarrow continuous spectrum (eg Blackbody)
- Cool diffuse gas in front of a blackbody \rightarrow absorption lines
 - Hot diffuse gas \rightarrow emission lines Spectrum with Spectrum Emission line absorption line Gas cloud Gas cloud Light source Light source

Spectroscope for typical atomic physics lab



High Voltage Supply

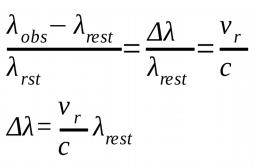
Diffraction Grating

Eyepiece

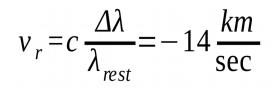
 $d \sin \theta = n\lambda$

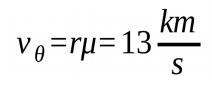
Doppler shift (see also Ch. 4)

- Spectral lines allow for the measurement of radial velocities
- At low velocities, $v_r \ll c$
 - Classical Doppler effect
 - *Radial velocity*, *v*_r
 - *Heliocentric correction* for Earth's motion, up to 29.8 km/s, depending on direction.



- Example: H_{α} is 6562.80 Å
 - Vega is measured to be 6562.50 Å
 - Coupled with the *proper motion*
 - Can determine total velocity





$$v = \sqrt{v_r^2 + v_{\vartheta}^2} = 19 \frac{km}{s}$$

Doppler shift

- Since most galaxies are moving away, astronomers call the Doppler shift a *redshift*, *z*.
- At high velocities, $v_r \ll c$
 - Relativistic redshift parameter (Ch. 4):

$$z = \frac{\Delta \lambda}{\lambda_{rest}}$$

$$z = \sqrt{\frac{1 + v_r/c}{1 - v_r/c}} - 1$$

- Example: Prob. 4.8. (should get: $v_r = 0.9337c$)

Particle/Wave Duality - Part 1

<u> PART 1</u>

- <u>Electrons</u> as discrete <u>Particles</u>
 - Measurement of **e/m** (CRT) and **e** (oil-drop expt.)
- <u>Photons</u> as discrete <u>Particles</u>
 - Blackbody Radiation: Temp. Relations & Spectral Distribution
 - Photoelectric Effect: Photon "kicks out" Electron
 - **Compton** Effect: Photon "scatters" off Electron

<u>PART 2</u>

- Wave Behavior: Diffraction and Interference
- **<u>Photons</u>** as <u>**Waves</u>: \lambda = hc / E</u>**
 - X-ray Diffraction (Bragg's Law)
- **<u>Electrons</u>** as <u>**Waves</u>**: $\lambda = h / p$ </u>
 - Low-Energy Electron Diffraction (LEED)

Photons: Quantized Energy Particle

• Light comes in discrete energy "packets" called photons

$$E = hv = \frac{hc}{\lambda}$$

From Relativity:
$$E^2 = (pc)^2 + (mc_*^2)^2$$
 Rest mass
For a Photon (m = 0): $E^2 = (pc)^2 + 0 \Rightarrow E = pc$

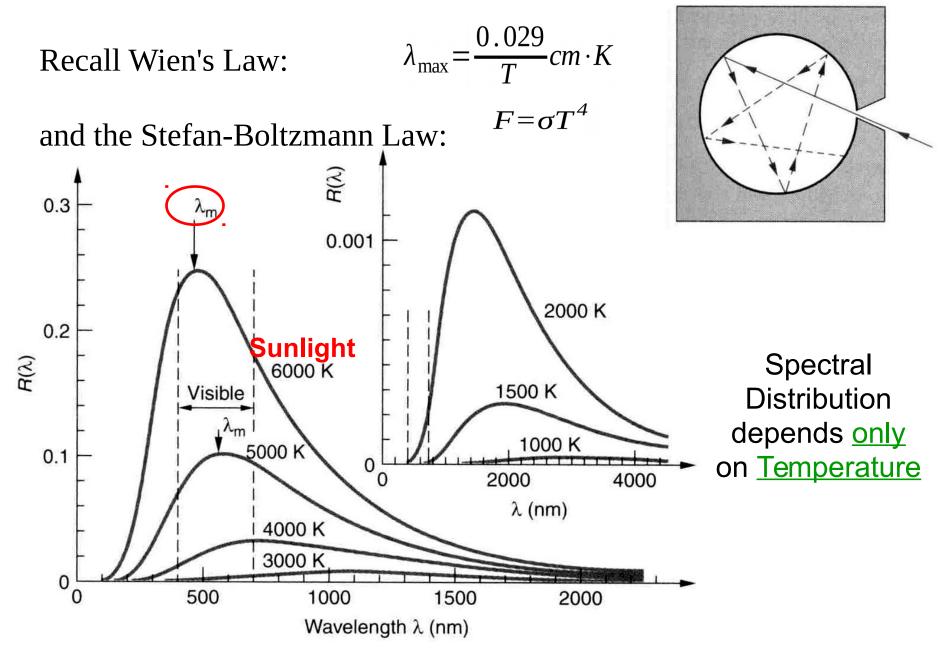
Momentum of Single Photon

Energy of

Single Photon

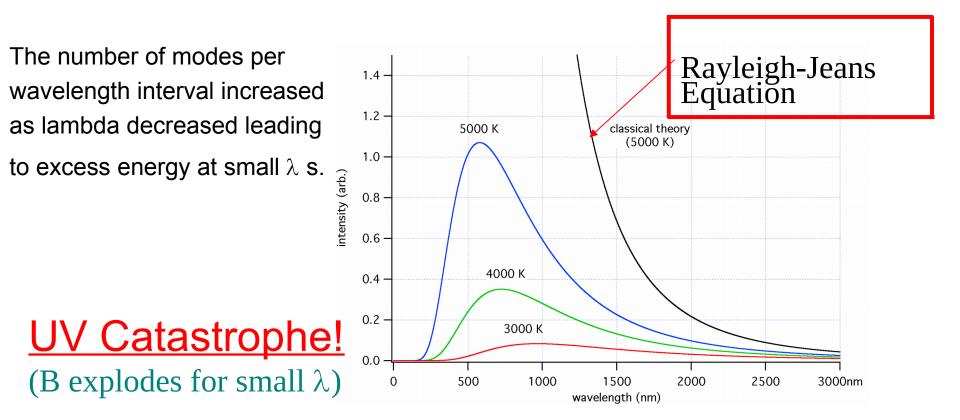
$$p = \frac{E}{c} = \frac{hc}{\lambda c} = \frac{h}{\lambda}$$

Blackbody Radiation: First clues to quantization



Blackbody Radiation: Rayleigh-Jeans Equation

Classical physics led to a prediction for the spectrum of cavity (blackbody) radiation whereby $B_{\lambda}(T) = \frac{2ckT}{\lambda^4}$ This was derived by assuming each mode of oscillation in the cavity would have an energy $E_{avg} = kT$ ($k = 1.38 \times 10^{-23}$ J/K is Boltzmann's constant)



Spectral Blackbody: Planck's Law

- Planck's Law was found empirically (trial and error!)
- Quantize the E&M radiation so that the minimum energy for light at a given wavelength is:

$$E_v = hv = hc/\lambda$$

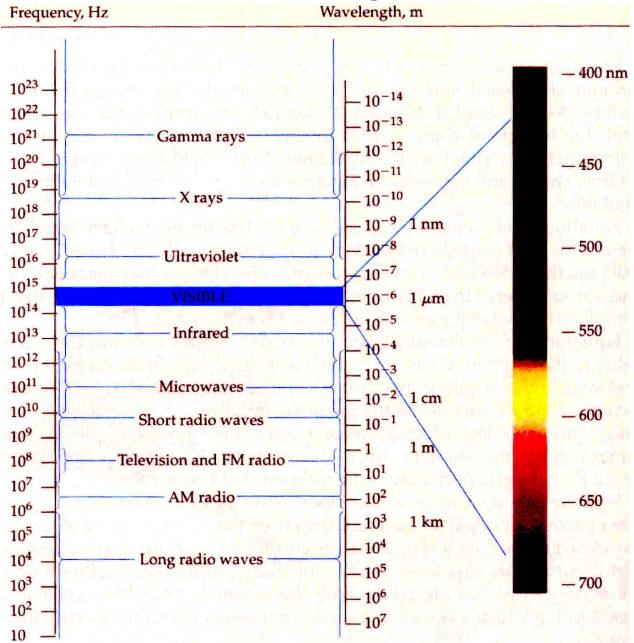
where h = Planck's Constant = $6.266 \times 10^{-27} \text{ erg} \cdot \text{s}$.

Then
$$E_v = nhv, n = 0, 1, 2, 3$$

can be used in replacing the classical kT expression for the average energy in a mode.

Now the entire hot object may not have enough energy to emit one photon of light at very small wavelengths, so n=0, and the UV catastrophe can be avoided.

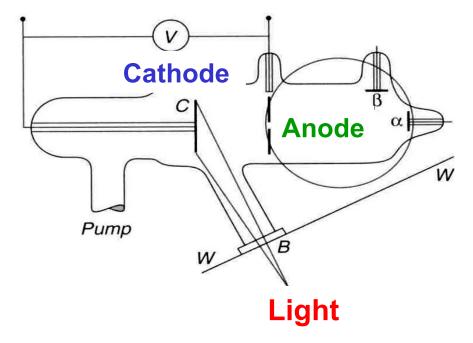
Photons: Electromagnetic Spectrum



Photoelectric Effect: "Particle Behavior" of Photon

- Shows quantum nature of light (Theory by Einstein & Expt. by Millikan).
- **<u>Photons</u>** hit metal cathode and instantaneously eject <u>electrons</u> (requires minimum energy = work function).
- Electrons travel from cathode to anode against <u>retarding voltage</u> V_R

- Electrons collected as "photoelectric" <u>current</u> at anode.
- Photocurrent becomes zero when retarding voltage V_R equals the <u>stopping</u> <u>voltage</u> V_{stop}, i.e. eV_{stop} = K_e



Photoelectric Effect - equation

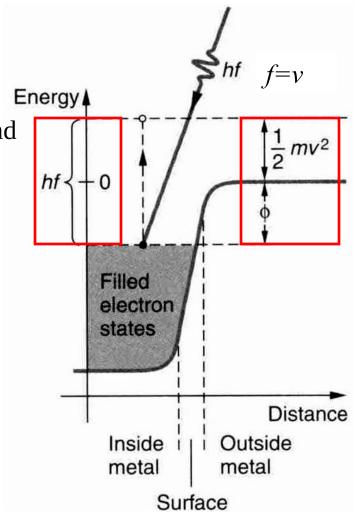
- PHOTON IN \Rightarrow ELECTRON OUT
 - e- kinetic energy = Total photon energy

– e− ejection energy

$$K_{\rm max} = hv - \varphi$$

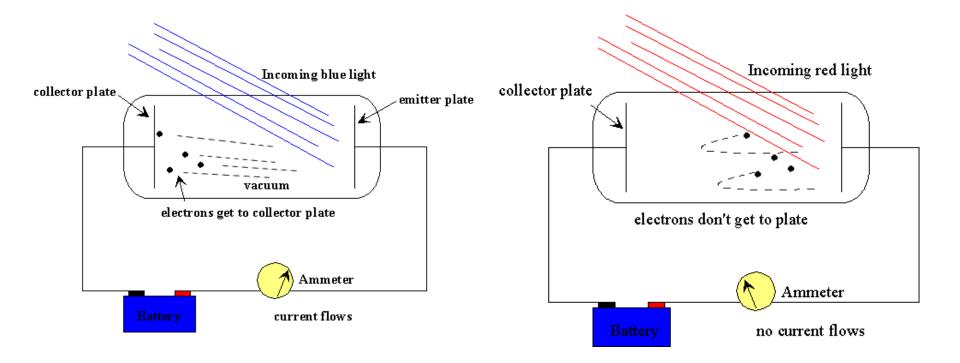
- where hv = photon energy, $\phi =$ work function, and $K_{max} =$ kinetic energy
- $K_{max} = eV_{stop} = stopping energy$
- <u>Special Case</u>: No kinetic energy ($V_o = 0$)
 - Minimum frequency *v* to eject electron

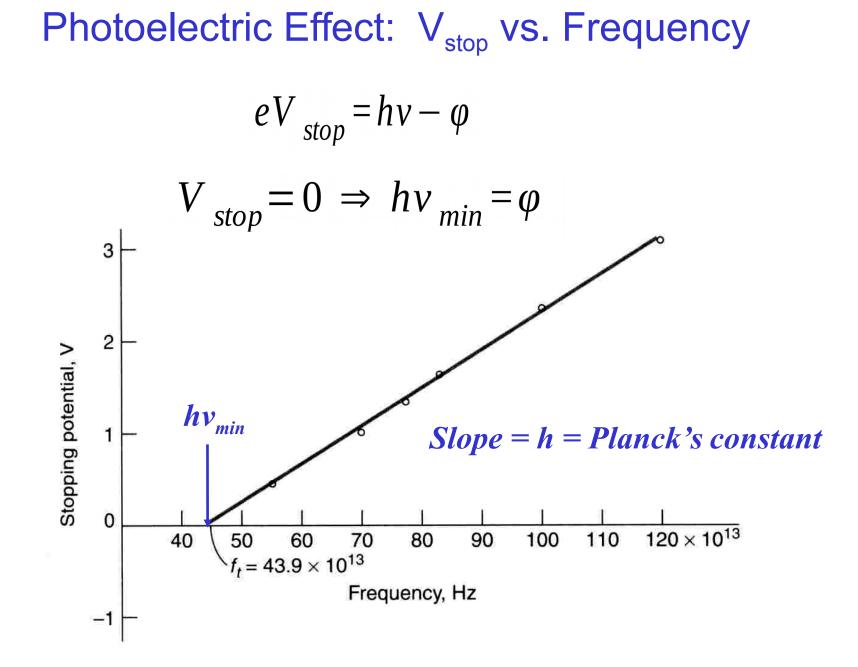
$$hv_{min} = \varphi$$



Photoelectric Effect

• In order to make electrons reach the collector plate, the light has to be "blue enough"; the intensity doesn't matter if light is red!





Photoelectric Effect Problem

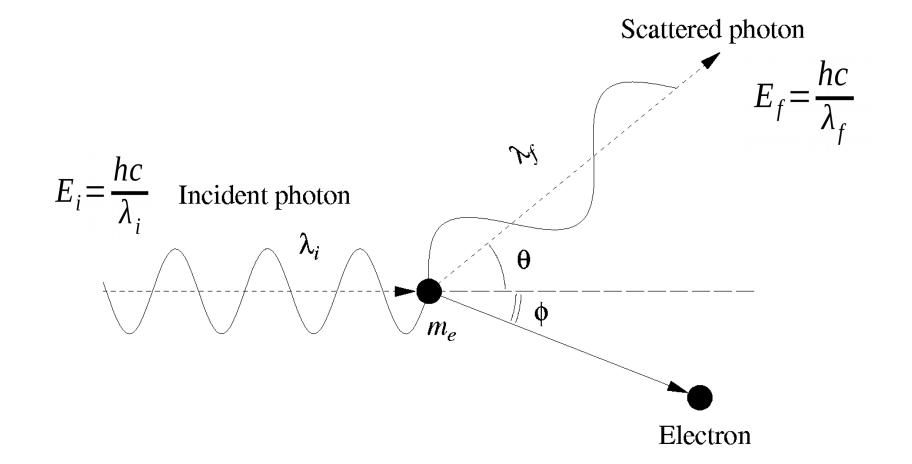
If the work function of a metal is 2.0 eV, a) find the maximum wavelength λ_m capable of causing the photoelectric effect, and, b) find the stopping potential if $\lambda = \lambda_m / 2$

Compton Scattering: "Particle-like" Behavior of Photon

<u>Concept</u>: Photon scatters off electron losing energy and momentum to the electron. The λ_r of scattered photon depends on θ

•Conservation of relativistic momentum and Energy!

•No mass for the photon but it has momentum!!!

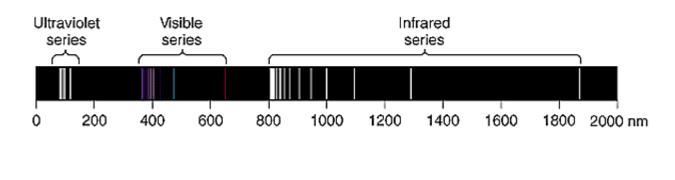


Compton Scattering: Equation Scattering Angle Photon OUT $-\lambda_{i} = \frac{h}{m_{e}c} (1 - \cos\theta)$ $\Delta \lambda = \lambda_f$ Photon IN Critical λ_c = 0.0024 nm for e⁻

- Limiting Values
 - No scattering: $\theta = 0^{\circ} \rightarrow \cos 0^{\circ} = 1 \rightarrow \Delta \lambda = 0$
 - "Bounce Back": $\theta = 180^{\circ} \rightarrow \cos 180^{\circ} = -1 \rightarrow \Delta \lambda = 2\lambda_{c}$
- Difficult to observe unless λ is small (i.e. $\Delta\lambda/\lambda > 0.01$)

Atomic Spectra

- 1885 Balmer observed Hydrogen Spectrum
 - Found empirical formula for discrete wavelengths
 - Later generalized by Rydberg for simple ionized atoms



$$\frac{1}{\lambda} = R_H \left(\frac{1}{2^2} - \frac{1}{n^2} \right)$$
 with $2 < n$

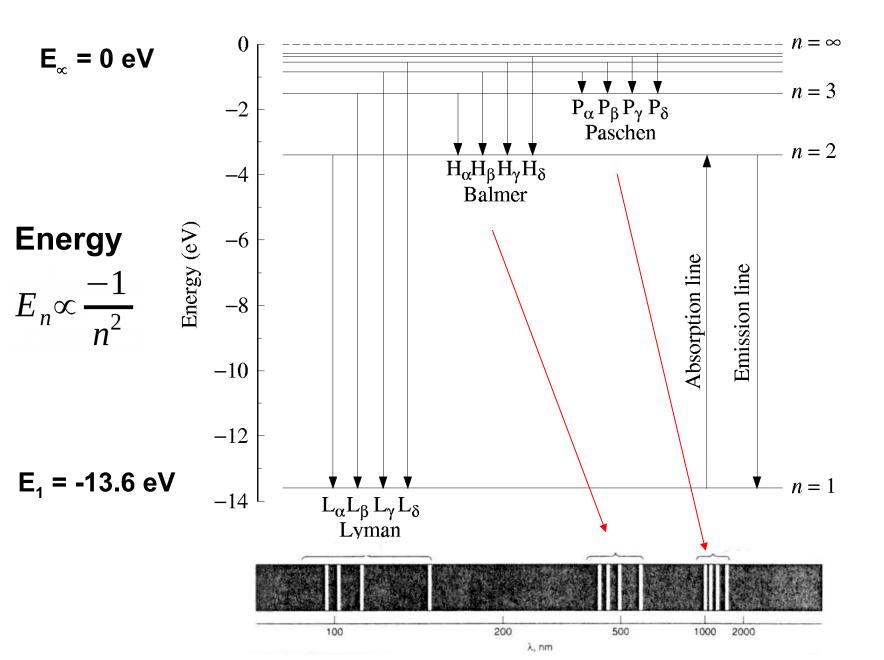
Atomic Spectra: Rydberg Formula

$$\frac{1}{\lambda} = R_H \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$$
 with $m < n$

- Gives λ for any lower level *m* and upper level *n* of Hydrogren.
- Rydberg constant $R_H \sim 1.097 \text{ x } 10^7 \text{ m}^{-1}$
- *m* = 1 (Lyman), 2 (Balmer), 3 (Paschen)
- Example for **n** = 2 to **m** = 1 transition:

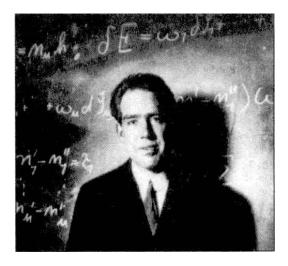
$$\frac{1}{\lambda} = R_H \left(\frac{1}{1^2} - \frac{1}{2^2} \right) = \frac{3}{4} \left(1.097 \times 10^7 \, m^{-1} \right)$$
$$\Rightarrow \lambda = 121.6 \ nm \ Ultraviolet$$

Atomic Spectra: Hydrogen Energy Levels



Bohr Model

- 1913 Bohr proposed quantized model of the H atom to predict the observed spectrum.
- Problem: Classical model of the electron "orbiting" nucleus is unstable. Why unstable?
 - Electron experiences (centripetal) acceleration.
 - Accelerated electron emits radiation.
 - Radiation leads to energy loss.
 - Electron quickly "crashes" into nucleus.



Bohr Model: Quantization

- Solution: Bohr proposed two "quantum" postulates
 - Electrons exist in stationary orbits (no radiation) with <u>quantized</u> <u>angular momentum</u>.

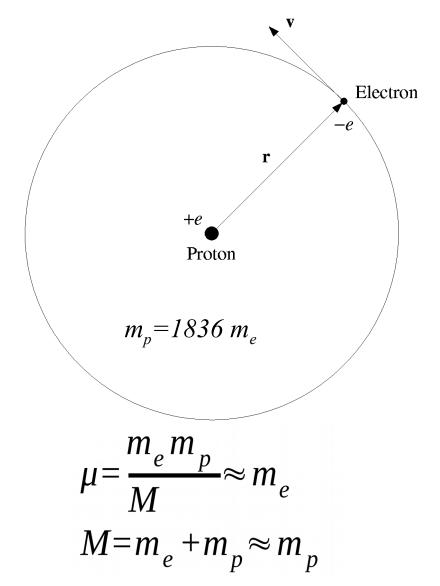
$$L_n = m v r = n \hbar \qquad \left(\hbar = \frac{h}{2\pi} = 6.58 \times 10^{-16} eV \cdot s\right)$$

 Atom radiates with <u>quantized frequency v (or energy E)</u> only when the electron makes a transition between two stationary states.

$$hv = \frac{hc}{\lambda} = E_i - E_f$$

Planetary Mechanics Applied to the H Atom

Consider the attractive electrostatic force and circular motion



$$\vec{F} = \frac{q_1 q_2}{r^2} \hat{r} = \mu \frac{v^2}{r} \hat{r}$$

Note: in cgs, $e = 4.803 x 10^{-10}$ esu

 $\frac{q_1 q_2}{r^2} = -\mu \frac{v^2}{r}$ $\frac{-e^2}{r^2} = -\mu \frac{v^2}{r}$ $\frac{1}{2}\mu v^2 = \frac{1}{2}\frac{e^2}{r} = K$ $U = -2K = -\frac{e^2}{r}$

Kinetic energy Potential energy

Planetary Mechanics Applied to the H Atom

Introduce Bohr's quantized angular momentum

 $L = \mu v r = n \hbar$ (wrong)

$$K = \frac{1}{2} \frac{e^2}{r} = \frac{1}{2} \mu v^2 = \frac{1}{2} \frac{(\mu v r)^2}{\mu r^2} = \frac{1}{2} \frac{(n \hbar)^2}{\mu r^2}$$

for r
 $r_n = \frac{\hbar^2}{\mu e^2} n^2 = a_0 n^2$ a_0 is the Bohr radius

• Get the Total Energy in terms of *n*. (Recall $E_{tot} = \langle U \rangle / 2$)

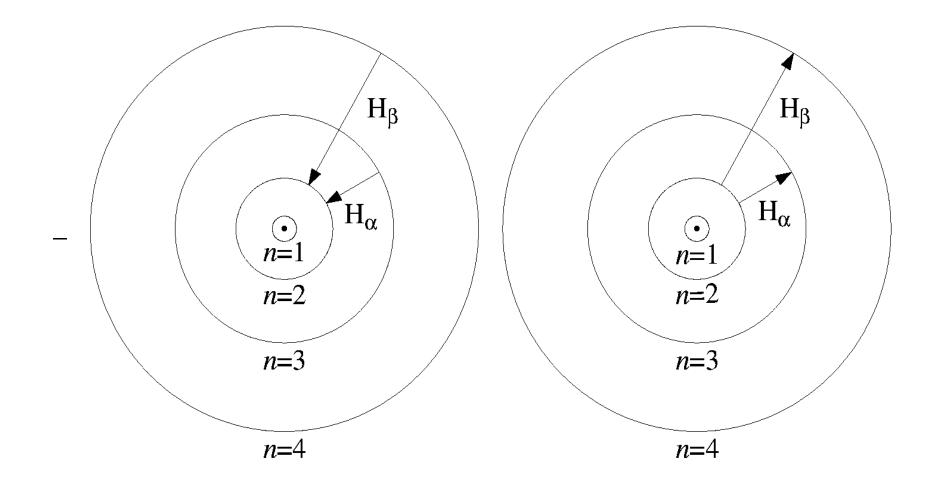
$$E_{n} = -\frac{1}{2} \frac{e^{2}}{r} = -\frac{\mu e^{4}}{2 \hbar^{2}} \frac{1}{n^{2}} = \frac{-13.6 \text{ eV}}{n^{2}} = \frac{-E_{0}}{n^{2}}$$

• Principle quantum number, n = 1, 2, 3, ...

Solving

Bohr Model: Transitions

• Transitions predicted by Bohr yield general Rydberg formula



Bohr Model Problem: Unknown Transition

If the wavelength of a transition in the **Balmer series** for a **He**⁺ atom is **121 nm**, then find the corresponding transition, i.e. initial and final n values.

$$\frac{1}{\lambda} = RZ^{2} \left(\frac{1}{n_{f}^{2}} - \frac{1}{n_{i}^{2}} \right) = R(2)^{2} \left(\frac{1}{(2)^{2}} - \frac{1}{n_{i}^{2}} \right)$$

where Z = 2 for He and $n_f = 2$ for Balmer

$$\frac{1}{4R\lambda} = \left(\frac{1}{4} - \frac{1}{n_i^2}\right)$$
$$n_i = \left(\frac{1}{4} - \frac{1}{4R\lambda}\right)^{-1/2} = \left(\frac{1}{4} - \frac{1}{4(1.1 \times 10^7 \, m^{-1})(121 \times 10^{-9} \, m)}\right)^{-1/2} = \underline{4}$$

Bohr Model Problem: Ionization Energy

Suppose that a He atom (Z=2) in its ground state (n = 1) absorbs a photon whose wavelength is λ = **41.3 nm**. Will the atom be **ionized**?

Find the energy of the incoming photon and compare it to the ground state ionization energy of helium, or E_0 from n=1 to ∞ .

$$E = \frac{hc}{\lambda} = \frac{1240 \ eV \ nm}{41.3 \ nm} = \frac{30 \ eV}{E_0}$$
$$E_0(He) = Z^2 \times E_0(H) = (2^2)(13.6 \ eV) = 54.4 \ eV$$

The photon energy (30 eV) is less than the ionization energy (54 eV), so the electron will NOT be ionized.

Bohr Model Problem: Series Limit (book)

Find the **shortest wavelength** that can be emitted by the **Li** ^{+ +} **ion**.

The shortest λ (or highest energy) transition occurs for the highest initial state ($n_i = \infty$) to the lowest final state ($n_f = 1$).

$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

where Z = 3 for Li, $n_i = \infty$, and $n_f = 1$ for shortest λ

$$\frac{1}{\lambda} = (1.1 \times 10^7 \, m^{-1}) (3)^2 \left(\frac{1}{(1)^2} - \frac{1}{(\infty)^2} \right) = 10.1 \, nm$$

Particle/Wave Duality - Part 2

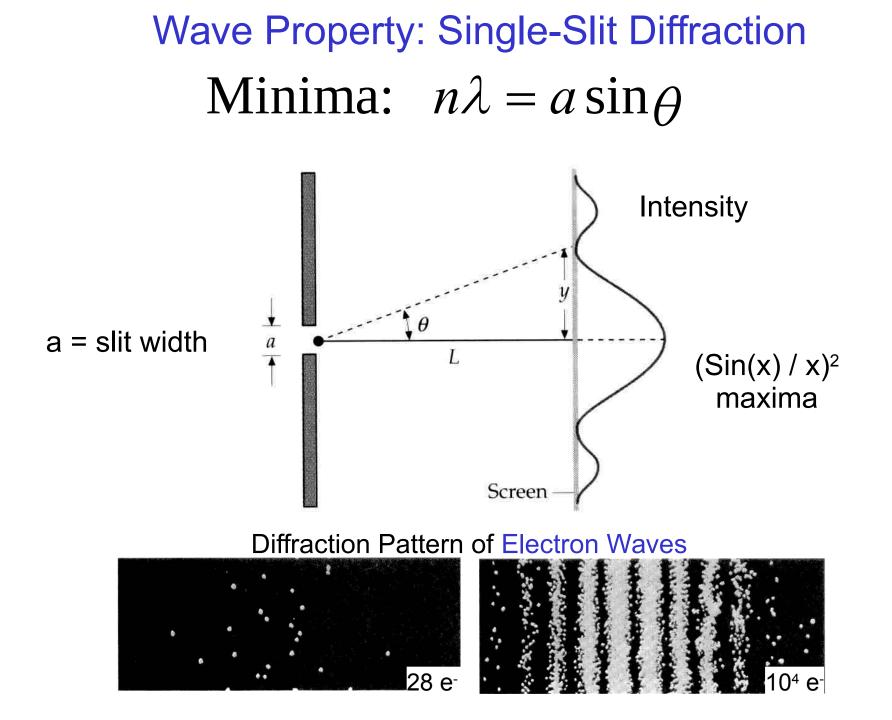
<u>PART 1</u>

- Electrons as discrete Particles
 - Measurement of e/m (CRT) and e (oil-drop expt.)
- Photons as discrete Particles
 - Blackbody Radiation: Temp. Relations & Spectral Distribution
 - Photoelectric Effect: Photon "kicks out" Electron
 - Compton Effect: Photon "scatters" off Electron

<u>PART 2</u>

- Wave Behavior: Diffraction and Interference
- **<u>Photons</u>** as <u>**Waves</u>: \lambda = hc / E</u>**
 - X-ray Diffraction (Bragg's Law)
- **<u>Electrons</u>** as <u>**Waves</u>**: $\lambda = h / p$ </u>

Low-Energy Electron Diffraction (LEED)



Electrons: Wave-like Behavior

• <u>Every</u> particle has a <u>wavelength</u> given by:

- $\lambda = \frac{h}{p}$
- **Question**: Why don't we observe effects of particle waves (i.e., diffraction and interference) in day-to-day life?
- <u>Answer</u>: Wavelengths of most macroscopic objects are <u>too small</u> to interact with slits, BUT atomicsized objects DO behave like waves!

Macroscopic – ping pong ball

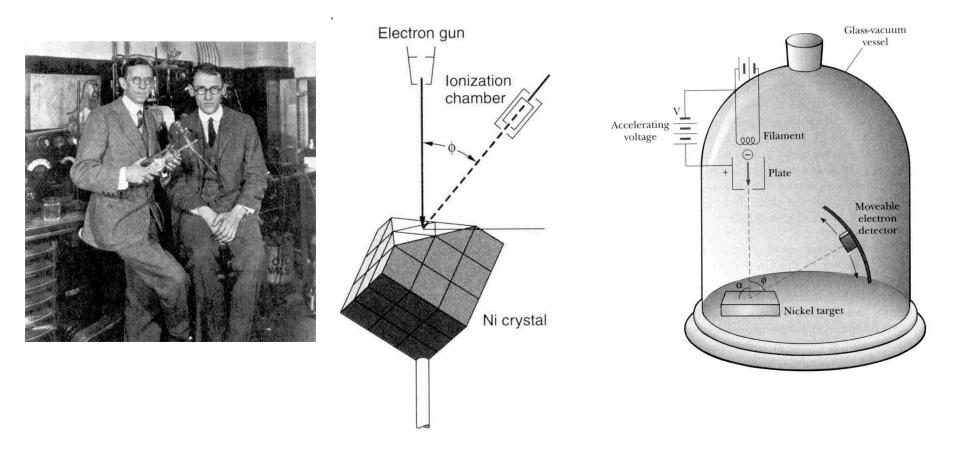
$$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34} J \cdot s}{(2 \times 10^{-3} kg)(5m/s)} = 6.6 \times 10^{-32} m \text{ (immeasurably small!)}$$

Microscopic – "slow electron" (1% speed of light)

$$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34} \, J \cdot s}{(9.1 \times 10^{-31} \, kg)(10^6 \, m/s)} = 7.3 \times 10^{-10} \, m \, (\text{ atomic dimension})$$

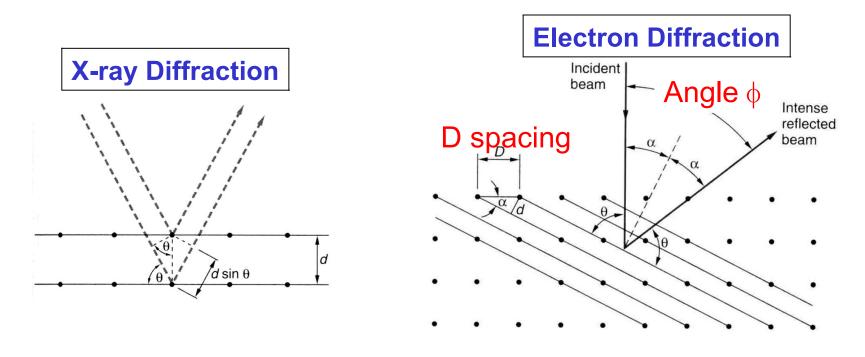
Electron Diffraction: Wave-like Behavior

- 1927 Davisson and Germer studied the <u>diffraction</u> of an electron beam from a nickel crystal <u>surface</u> and observed discrete spots (maxima).
- Modern day technique now: Low Energy Electron Diffraction (LEED).



Electron Diffraction: LEED Equation

Concept: Use Bragg's Law for X-ray scattering and then substitute appropriate angles, where λ is now the <u>electron</u> wavelength.

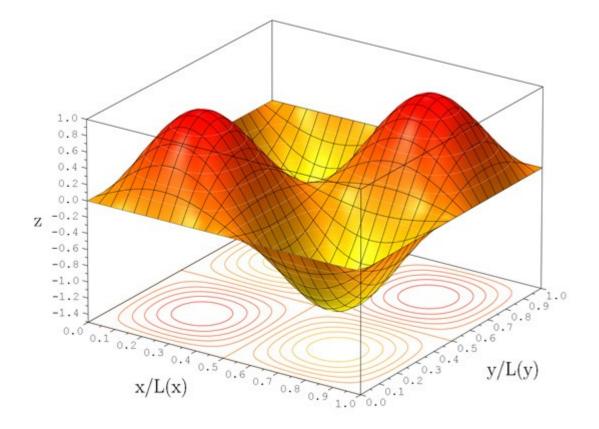


 $n\lambda = 2 \operatorname{dsin}_{\downarrow} \theta = 2 \operatorname{Dsin}_{\alpha} \cos \alpha = D \operatorname{sin}_{2} \alpha$ Dsina cosa ¹/₂sin2a by trig

 $n\lambda = D \sin 2\alpha = D \sin \varphi$

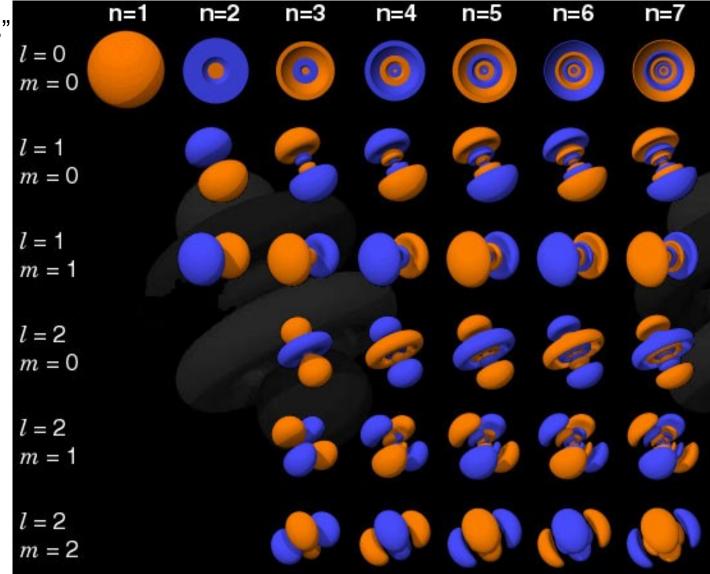
Wave/Particle Duality

- The particle wavefunction, ψ , is the "probability amplitude" (see figure "Z"), a complex number.
- Probability density = $|\Psi|^2$ gives the probability of where we might find the particle. (this must be positive)
- Can have destructive and constructive interference



Wave/Particle Duality

- This picture shows some of the possible electron probability densities for different quantum states of the H atom.
- Electron "clouds"



- Probability "clouds"
 - kind of the opposite of the "Plum Pudding" model

