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The Classification of Stellar Spectra
• Classification scheme developed before the physics

• Parameters that could be used to classify stars
– Apparent brightness (bad idea)

– Luminosity (Intrinsic brightness)

– Temperature (Color)

– Spectra (absorption lines)

– Mass (only for binaries)

• The Henry Draper Catalogue
– Contained >100,000 spectral

classifications from A.J. Cannon
and others from Harvard

– Used OBAFGKM

http://cannon.sfsu.edu/%7Egmarcy/cswa/history/pick.html

The “Computers” of the Harvard 
College Observatory



The Classification of Stellar Spectra
• Originally organized by strength of H Balmer lines (A,B,...).
• Atomic physics allowed connection to temperature to be made.
• Spectral Types:

– Subdivisions in tenths: 0  9 (early  late, hot  cool) within a Spectral 
Type).  E.g., A0 is hotter than A5.

– The Sun is a G2 – an early G-type star

• G – yellow star (continuum peak in green/yellow)

– H lines weak

– Ca II (singly ionized) lines continue becoming stronger

– Fe I, other neutrals metal lines become stronger

Early type  late type L and T are more modern 
additions – Brown Dwarfs.
R N S also used after M.



O to G example

O = HeII strongest, HeI 
increases from O0 to O9
B = HeI strongest at B2, HI 
(Balmer) strengthen from B0 to 
B9
A = HI (Balmer) strongest at 
A0
F = HI weakening, CaII 
strengthen from F0 to F9. FeI 
and Cr I present.
G = HI weak while CaII and 
FeI strengthen
K = CaII peak at K0, lots of 
neutral metals
M =  



G to M example

G = HI weak while CaII and 
FeI strengthen
K = CaII peak at K0, lots of 
neutral metals
M =  TiO, VO and other 
molecular abs lines dominate.  
Neutral metals remain.
L = TiO and VO weaker but 
other molecular bands stronger 
(CrH, FeH, H2O, CO). Also 
Alkali metals Na, K, Rb, Cs.
Temp = 1300-2500 K.
T = Strong methane (CH4) 
weakening CO.  Temp<1300 K.



The Formation of Spectral Lines
• Question: What causes the differences in the observed spectra??

– [Absorption by intervening material.  Earth's atmos., ISM.]

– Composition

– Temperature

– Surface gravity / pressure

• Answer:
– Temperature is the main factor Balmer Thermometer



The Formation of Spectral Lines
• Big Question of Ch.8: Why are the H balmer lines strongest for A 

stars, which seem to have T_surf = 10,000K?

• To find answer:

Need Ch.5's info about the Bohr atom … energy levels (n) and states l,ml,ms.
– Need Kirchoff's laws → our gas is the upper “atmosphere” of the star.

– Need statistical mechanics – to find probability that particles are in a given 
state.  Large numbers of particles involved!



The Formation of Spectral Lines
• Distribution of electrons in different atomic orbitals depends on 

temperature
• Electrons can jump up in energy by absorption of a photon OR 

collision with a particle!  So KE of surrounding particles important.

• Maxwell-Boltzmann velocity distribution
– Tells us what fraction of particles are in a velocity range

– Assumes thermal equilibrium

– Number of gas particles per unit volume have a speed between v and v+dv

nv dv=n(
m

2π kT )
3
2 e

−
1
2

mv2
/ kT

4π v 2dv



• Most probable speed

• Root-mean-square

• Average

• Collisional energy causes 
a distribution of electrons 
among the atomic orbitals
(Kinetic Energy  Potential Energy

nv dv=n(
m

2π kT )
3
2 e

−
1
2

mv2
/ kT

4π v 2dv

Maxwell-Boltzmann Distribution

v mp=√
2 kT

m
=1. 4 √kT /m

v rms=√
3 kT

m
=1 .73 √ kT / m

v avg=√
8 kT
πm

=1. 6 √ kT / m



Boltzmann Factor

• The higher the energy of a state, the less likely it will be occupied

– For the Maxwell-Boltzmann distribution, the energy is Kinetic Energy

• The “kT” term is associated with the thermal energy of the “gas” as 
a whole

• Ratio of Probabilities for two different states (and energies)
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Degeneracy Factor
• An energy (eigenvalue) is associated with each set of quantum 

numbers (eigenstate or eigenfunction)

• Degenerate States have different quantum numbers but the same 
energy

• Modify the Boltzmann factor

– The probability of being in any of the ga degenerate states with energy Ea

• ga is the degeneracy or statistical weight of state a

• Ratio of probabilities between states with two different energies

P a∝ g a e
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Degeneracy Factor
• Details of quantum mechanics determines the energies and quantum 

numbers…

• Visit the following site on the next page and browse… 

• Quantum numbers for Hydrogen {n, l, ml, ms}
– Table 8.2

n l ml ms

g n=2n 2



Boltzmann Equation
• Number of atoms in a particular state a

N = total number of atoms

Na = number of atoms in state a

Pa = probability of being in state a

⇒
N b

N a

=
g b

g a

e

− (E
b
− E

a)
kT

N a =NP a

Hydrogen Atom Examples
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Hydrogen Atom
• Balmer series absorption 

spectra is an upward 
transition from n = 2

• Observation: this series has 
a peak absorption spectrum 
at ~9520 K.



• We just saw that not many Hydrogen atoms are in the n=1 state at 
9520 K!

– Shouldn’t the intensity keep growing as the temperature 
increases since there is a higher probability for an H atom to be 
in the n=2 state?!?!

Hydrogen Atom Populations



Partition Function
• We also have to figure in all states that have a significant 

population

• For one state we have:

• Ratio between two states:

• Ratio of state 2 to all other states with reference to the ground state:
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Partition Function
• This tell us how many states are accessible or available at a given 

temperature (thermal energy)

• The higher the temperature, the more states that are available
• At zero K, everything will be in the ground state

– Bose-Einstein Condensates
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Partition Function and Atoms
• We also have to handle ionization!

• Nomenclature: H I – neutral hydrogen

H II – singly ionized hydrogen

He I – neutral Helium

He II – singly ionized Helium

He III – doubly ionized Helium

• Ionization Energy for H I to H II

– Rather than N2/N1   , the atom will ionize before this happens

χ I=13 .6 eV



Saha Equation
• Determines the ratio of numbers of ionized atoms

• Need distinct partition functions since energy levels of atoms are 
different for different ionization stages

– Zi is the initial stage of ionization

– Zi+1 is the final stage of ionization

• Ratio of the number of atoms in each of these stages

– ne is the electron density (an ideal gas of electrons)

• Electron pressure

• Electrons recombine with H II to give H I

N i+1

N i

=
2Z i+1

ne Z i
(
2π me kT

h2 )
3
2 e− χ i kT

P e =ne kT



Ionized Hydrogen Atoms
• Fraction of hydrogen atoms that are ionized

• If we have H II, we can’t have the Balmer series!



H I n = 2 population

N 2

N total

=(
N 2

N I +N 2
)(

N I

N I +N II
)

Fraction of non-ionized hydrogen
Atoms in the n = 2 state

Fraction of non-ionized
hydrogen atoms



H I n = 2 population
• Includes the Boltzmann factor, partition function and ionization

• Population peak at 9520 K, in agreement with observation of the 
Balmer series



Example 8.3
• Degree of ionization in a stellar atmosphere of pure hydrogen for 

the temperature range of 5000-25000 K

• Given electron pressure
• Saha equation

• Must determine the partition functions
– Hydrogen ion is a proton, so ZII = 1

– Neutral hydrogen over this temp range

P e=200
dyne

cm2
=20 N /m2

N II

N I

=
2 kTZ II

P e Z I
(
2π me kT

h2 )
3
2 e− χ i kT

N II

N Total

T 5000K

k T 0.43eV

T 25000K

k T 2.15eV

E = E2 – E1 = 10.2 eV 

E >> kT, then e− ΔE / kT <<1

⇒ Z I =g1+∑
i
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i
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Example 8.3
• Degree of Ionization N II

N I

=
2 kT (1 )

P e( 2) (
2π me kT

h2 )
3
2 e− χ i kT

N II

N I +N II

=

N II / N I

1+N II / N I

Most of the ionization occurs 
over a 3000 K region

Partial ionization zone



Problem 8.7
• Evaluate the first three terms of the partition function for 10000K

Partition Function: Counting the first ten states... Energy: E n( )
13.6 eV

n
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Problem 8.8
• The partition function diverges at n  

– Why do we ignore large n?

Partition Function: Counting the first 100 states... Energy: E n( )
13.6 eV
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Problem 8.8

• Ionization

• Unphysical orbital size

Partition Function: Counting the first 1000 states... Energy: E n( )
13.6 eV
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Example 8.4
• Surface of the Sun has 500,000 hydrogen atoms per calcium atom, 

but calcium absorption lines are much stronger than the Balmer 
series lines.

• The Boltzmann and Saha equations reveal that there are 400 more 
Ca atoms in the ground electronic state than in the n=2 hydrogen 
state.

• Calcium is not more abundant

• Differences are due to sensitive temperature dependence



Hertzsprung-Russell (H-R) Diagram

Color index

Spectral 
class

Absolute
Magnitude
(Luminosity) R=

1

T 2 √
L

4 πσ



A colorful
H–R Diagram





T (K)

How temperature relates to color index
..........................



Hertzsprung-Russell (H-R) Diagram
• Luminosity and Temperature rather than Magnitude and Color Index

The “theorists H-R Diagram”.   Nuclear processes vary along MS.



Hertzsprung-Russell (H-R) Diagram
• Star Radius

R=
1

T 2 √
L

4 πσ



Hertzsprung-Russell (H-R) Diagram



Luminosity Classes



Stellar Luminosity Classes

Some define VI and wd (or D) 



Luminosity classes can be discerned by 
line widths.

Courtesy ANU.

However,
Other processes
Can
Broaden lines...



Mass-Luminosity Relation from Binary Systems



Mass-Luminosity Relation
• Early theories had “early” O-type (bright, hot, massive) stars 

evolving to “old” M-type stars  (dim, cool, less massive) 



Mass-Luminosity Relation
• Luminosity (power output) comes from nuclear fusion at the 

core of the stars.
• L increases dramatically with M:  L ~ M3.5 (from M-L relation)
• From this, we can derive a lifetime for stars on the Main Seq.:

– Lifetime = Fuel/(Rate of burning fuel)

– Lifetime = M/L

– Lifetime = M/M3.5 = M-2.5

• Actually, L~M4 for M>1, so 
• Lifetime ~ M-3



Evolution of 1 M⊙ star.



Evolutionary tracks.



Massive star fusion



HR Diagrams of star clusters.



Figure 17-17
Stellar Distances



Spectroscopic “Parallax”
• Method to determine a stars distance

– Determine the spectral class and luminosity class.

– Measure apparent magnitude.

• Correct for crowding

• Correct for extinction

– Read the absolute magnitude from the H-R diagram

– Compare to apparent magnitude to determine distance: d=10(m-M-A+5)/5



Stellar and Spectroscopic Parallax
Stellar Parallax  works out to 200pc (ground), 1000 pc (Hipparcos)
Spectroscopic Parallax works for stars for which a good spectrum
 can be observed  (about 8 kpc), but ...
• Not precise for individual stars, especially giants
• Entire clusters of stars works better! (“main-sequence fitting”)

m-M=5log(d/10)

Spec Parallax assumes, for example, that all A0V stars have the same M.
That makes A0V stars “standard candles”.
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