The Classification of Stellar Spectra Chapter 8

Star Clusters in the Large Magellanic Cloud

The Classification of Stellar Spectra Chapter 8

Copyright © 2005 Pearson Prentice Hall, Inc.

The Classification of Stellar Spectra

- Classification scheme developed before the physics
- Parameters that could be used to classify stars
 - Apparent brightness (bad idea)
 - Luminosity (Intrinsic brightness)
 - Temperature (Color)
 - Spectra (absorption lines)
 - Mass (only for binaries)
- The Henry Draper Catalogue
 - Contained >100,000 spectral classifications from A.J. Cannon and others from Harvard
 - Used OBAFGKM

The "Computers" of the Harvard College Observatory

http://cannon.sfsu.edu/%7Egmarcy/cswa/history/pick.html

The Classification of Stellar Spectra

- Originally organized by strength of H Balmer lines (A,B,...).
- Atomic physics allowed connection to temperature to be made.

- Subdivisions in tenths: 0 → 9 (early → late, hot → cool) within a Spectral Type). E.g., A0 is hotter than A5.
- The Sun is a G2 an early G-type star
 - G yellow star (continuum peak in green/yellow)
 - H lines weak
 - Ca II (singly ionized) lines continue becoming stronger
 - Fe I, other neutrals metal lines become stronger

O to G example

O = HeII strongest, HeI increases from O0 to O9 B = HeI strongest at B2, HI (Balmer) strengthen from B0 to B9

A = HI (Balmer) strongest at A0

F = HI weakening, CaII strengthen from F0 to F9. FeI and Cr I present.

G = HI weak while CaII and FeI strengthen

```
K = CaII peak at K0, lots of neutral metals
```

M =

G to M example

G = HI weak while Call and FeI strengthen K = CaII peak at K0, lots ofneutral metals M = TiO, VO and othermolecular abs lines dominate. Neutral metals remain. L = TiO and VO weaker but other molecular bands stronger (CrH, FeH, H2O, CO). Also Alkali metals Na, K, Rb, Cs. Temp = 1300-2500 K.T = Strong methane (CH4)weakening CO. Temp<1300 K.

The Formation of Spectral Lines

- Question: What causes the differences in the observed spectra??
 - [Absorption by intervening material. Earth's atmos., ISM.]
 - Composition
 - Temperature
 - Surface gravity / pressure
- Answer:

The Formation of Spectral Lines

- Big Question of Ch.8: Why are the H balmer lines strongest for A stars, which seem to have T_surf = 10,000K?
- To find answer:

Need Ch.5's info about the Bohr atom ... energy levels (n) and states l,m_l,m_s .

- Need Kirchoff's laws \rightarrow our gas is the upper "atmosphere" of the star.
- Need statistical mechanics to find probability that particles are in a given state. Large numbers of particles involved!

The Formation of Spectral Lines

- Distribution of electrons in different atomic orbitals depends on temperature
- Electrons can jump up in energy by absorption of a photon OR collision with a particle! So KE of surrounding particles important.
- Maxwell-Boltzmann velocity distribution
 - Tells us what fraction of particles are in a velocity range
 - Assumes thermal equilibrium
 - Number of gas particles per unit volume have a speed between v and v+dv

$$n_{v} dv = n \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{1}{2}mv^{2}/kT} 4\pi v^{2} dv$$

Maxwell-Boltzmann Distribution $n_v dv = n \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{1}{2}mv^2/kT} 4\pi v^2 dv$

• Most probable speed

Boltzmann Factor

• The higher the energy of a state, the less likely it will be occupied

$$P_a \propto e^{\frac{-E_a}{kT}}$$

- For the Maxwell-Boltzmann distribution, the energy is Kinetic Energy

$$P_v \propto e^{-\frac{1}{2}mv^2/kT}$$

- The "*kT*" term is associated with the thermal energy of the "gas" as a whole
- Ratio of Probabilities for two different states (and energies)

$$\frac{P_b}{P_a} = \frac{e^{\frac{-E_b}{kT}}}{e^{\frac{-E_a}{kT}}} = e^{\frac{-(E_b - E_a)}{kT}}$$

Degeneracy Factor

- An energy (eigenvalue) is associated with each set of quantum numbers (eigenstate or eigenfunction)
- *Degenerate States* have different quantum numbers but the same energy
- Modify the Boltzmann factor

$$P_a \propto g_a e^{\frac{-E_a}{kT}}$$

- The probability of being in any of the g_a degenerate states with energy E_a
 - g_a is the <u>degeneracy</u> or <u>statistical weight</u> of state a

• Ratio of probabilities between states with two different energies

$$\frac{P_b}{P_a} = \frac{g_b}{g_a} e^{\frac{-\left(E_b - E_a\right)}{kT}}$$

Degeneracy Factor

- Details of quantum mechanics determines the energies and quantum numbers...
- Visit the following site on the next page and browse...
- Quantum numbers for Hydrogen $\{n, l, m_b, m_s\}$
 - Table 8.2

	п	l	m_l	m_s	
State	Principal quantum number n	Orbital quantum number	Magnetic quantum number	Spin quantum number	Maximum number of electrons
1s	1	0	0	$+\frac{1}{2},-\frac{1}{2}$	2
2s	2	0	0	$+\frac{1}{2},-\frac{1}{2}$	2]
2р	2	1	-1,0,+1	$+\frac{1}{2},-\frac{1}{2}$	6 ∫ ⁰
3s	3	0	0	$+\frac{1}{2},-\frac{1}{2}$	2
Зр	3	1	-1,0,+1	$+\frac{1}{2},-\frac{1}{2}$	6 2 18
3d	3	2	-2,-1,0,1,2	$+\frac{1}{2},-\frac{1}{2}$	$10] = 2n^2$

Boltzmann Equation

• Number of atoms in a particular state *a*

$$N_a = NP_a$$

N = total number of atoms $N_a =$ number of atoms in state *a* $P_a =$ probability of being in state *a*

$$\Rightarrow \frac{N_b}{N_a} = \frac{g_b}{g_a} e^{\frac{-\left(E_b - E_a\right)}{kT}}$$

Hydrogen Atom Examples

Hydrogen Atom

- Balmer series absorption spectra is an upward transition from n = 2
- Observation: this series has a peak absorption spectrum at ~9520 K.

Hydrogen Atom Populations

- We just saw that not many Hydrogen atoms are in the *n*=1 state at 9520 K!
 - Shouldn't the intensity keep growing as the temperature increases since there is a higher probability for an H atom to be in the *n*=2 state?!?!

Partition Function

- We also have to figure in all states that have a significant population \boldsymbol{L}
- For one state we have:

$$P_1 \propto g_1 e^{\frac{-E_1}{kT}}$$

Ratio of state 2 to all other states with reference to the ground state:

$$\frac{P_2}{P_{all}} = \frac{g_b e^{\frac{-(E_2 - E_1)}{kT}}}{\sum_{kT}^{-(E_1 - E_1)} e^{\frac{-(E_2 - E_1)}{kT}} + g_2 e^{\frac{-(E_2 - E_1)}{kT}} + g_3 e^{\frac{-(E_3 - E_1)}{kT}} + \cdots} = \frac{g_2 e^{\frac{-(E_2 - E_1)}{kT}}}{Z}$$

Partition Function

• This tell us how many states are accessible or available at a given temperature (thermal energy)

- The higher the temperature, the more states that are available
- At zero K, everything will be in the ground state
 - Bose-Einstein Condensates

Partition Function and Atoms

- We also have to handle ionization!
- Nomenclature: H I neutral hydrogen

H II – singly ionized hydrogen He I – neutral Helium He II – singly ionized Helium He III – doubly ionized Helium

• Ionization Energy for H I to H II

 $\chi_I = 13.6 \, eV$

- Rather than $N_2/N_1 \rightarrow \infty$, the atom will ionize before this happens

Saha Equation

- Determines the ratio of numbers of ionized atoms
- Need distinct partition functions since energy levels of atoms are different for different ionization stages
 - Z_i is the initial stage of ionization
 - Z_{i+1} is the final stage of ionization
- Ratio of the number of atoms in each of these stages

$$\frac{N_{i+1}}{N_i} = \frac{2Z_{i+1}}{n_e Z_i} \left(\frac{2\pi m_e kT}{h^2} \right)^{\frac{3}{2}} e^{-\chi_i kT}$$

- n_e is the electron density (an ideal gas of electrons)
 - Electron pressure *P*

$$P_e = n_e kT$$

• Electrons recombine with H II to give H I

Ionized Hydrogen Atoms

- Fraction of hydrogen atoms that are ionized
- If we have H II, we can't have the Balmer series!

H I n = 2 population

H I n = 2 population

- Includes the Boltzmann factor, partition function and ionization
- Population peak at 9520 K, in agreement with observation of the Balmer series

Example 8.3

- Degree of ionization in a stellar atmosphere of pure hydrogen for the temperature range of 5000-25000 K $\frac{N_{II}}{N_{II}}$
- Given electron pressure $P_e = 200 \frac{dyne}{cm^2} = 20 N/m^2^{N_{Total}}$
- Saha equation $\frac{N_{II}}{N_{I}} = \frac{2 kTZ_{II}}{P_e Z_I} \left(\frac{2\pi m_e kT}{h^2}\right)^{\frac{3}{2}} e^{-\chi_i kT}$
- Must determine the partition functions
 - Hydrogen ion is a proton, so $Z_{II} = 1$
 - Neutral hydrogen over this temp range

$$\Delta E = E_2 - E_1 = 10.2 \text{ eV}$$

$$\Delta E >> kT$$
, then $e^{-\Delta E/kT} <<1$

$$\Rightarrow Z_I = g_I + \sum_i g_i e^{\frac{-(E_i - E_1)}{kT}} g_1 = 2$$

T := 5000Kk·T = 0.43 eV

$$T := 25000K$$

k·T = 2.15 eV

Example 8.3 $\frac{N_{II}}{N_{I}} = \frac{2kT(1)}{P_{e}(2)} \left(\frac{2\pi m_{e} kT}{h^{2}}\right)^{\frac{3}{2}} e^{-\chi_{i} kT}$ Degree of Ionization 1.00.9 0.8 N_{II} 0.7 Most of the ionization occurs N_{II}/N_{total} $N_I + N_{II}$ 0.6 over a 3000 K region 0.5 N_{II}/N_{I} $\overline{1+N_{II}/N_{II}}$ 0.4 0.3 0.2 Partial ionization zone 0.1 0.0 └─ 5000 10,000 15,000 20,000 25,000 Temperature (K)

Problem 8.7

• Evaluate the first three terms of the partition function for 10000K

Problem 8.8

- The partition function diverges at $n \rightarrow \infty$
 - Why do we ignore large *n*?

Problem 8.8

- Ionization
- Unphysical orbital size $r_n = a_o n^2$

Example 8.4

- Surface of the Sun has 500,000 hydrogen atoms per calcium atom, but calcium absorption lines are much stronger than the Balmer series lines.
- The Boltzmann and Saha equations reveal that there are $400 \times$ more Ca atoms in the ground electronic state than in the n=2 hydrogen state.
- Calcium is not more abundant
- Differences are due to sensitive temperature dependence

A colorful H–R Diagram

How temperature relates to color index

• Luminosity and Temperature rather than Magnitude and Color Index

• Star Radius

Luminosity Classes

Spectral classification Copyright © 2005 Pearson Prentice Hall, Inc.

Stellar Luminosity Classes

TABLE 17.3Stellar Luminosity Classes

Class	Description
Ia	Bright supergiants
Ib	Supergiants
II	Bright giants
III	Giants
IV	Subgiants
V	Main-sequence stars and dwarfs

Copyright © 2005 Pearson Prentice Hall, Inc.

Some define VI and wd (or D)

Luminosity classes can be discerned by line widths.

Courtesy ANU.

Mass-Luminosity Relation from Binary Systems

Mass-Luminosity Relation

• Early theories had "early" O-type (bright, hot, massive) stars evolving to "old" M-type stars (dim, cool, less massive)

Mass-Luminosity Relation

- Luminosity (power output) comes from nuclear fusion at the core of the stars.
- L increases dramatically with M: $L \sim M^{3.5}$ (from M-L relation)
- From this, we can derive a lifetime for stars on the Main Seq.:
 - Lifetime = Fuel/(Rate of burning fuel)
 - Lifetime = M/L
 - Lifetime = $M/M^{3.5} = M^{-2.5}$
- Actually, L~M⁴ for M>1, so
- Lifetime $\sim M^{-3}$

Spectral classification

Evolutionary tracks.

Massive star fusion

HR Diagrams of star clusters.

Copyright © 2005 Pearson Prentice Hall, Inc.

Spectroscopic "Parallax"

- Method to determine a stars distance
 - Determine the spectral class and luminosity class.
 - Measure apparent magnitude.
 - Correct for crowding
 - Correct for extinction
 - Read the absolute magnitude from the H-R diagram
 - Compare to apparent magnitude to determine distance: d=10(m-M-A+5)/5

Stellar and Spectroscopic Parallax <u>Stellar Parallax</u> works out to 200pc (ground), 1000 pc (Hipparcos) <u>Spectroscopic Parallax</u> works for stars for which a good spectrum can be observed (about 8 kpc), but ...

- Not precise for individual stars, especially giants
- Entire clusters of stars works better! ("main-sequence fitting")

Spec Parallax assumes, for example, that all A0V stars have the same M. That makes A0V stars "standard candles".