
  

Chapter 29->27

Magnetic Fields



PHYS 2321 
Week 9: Magnetism

Day 1 Outline
1) Hwk:  Ch. 27 P. 3-5,10,13,17,21,28, 33,39,49    -Due Friday
      Read Ch. 27.1-7
2) Kirchhoff’s laws (Loop rule, junction rule)  (Ch 26)
3) Magnetic Fields and Forces (Ch 27)
   a. Bar magnets (behavior and field lines)
   b. Force on current-carrying wire
   c. Force on moving charged particles
        * Lorentz force: 

Notes:  Some still need to turn in Ch. 26 P. 1,2,5,7...31.
   Ch. 25 &26 graded.  Mean = 9.2/10. Checked P.9,28, MQ 1,9.
   Consider a physics major or minor!
           

F⃗B=q ( v⃗×B⃗ )
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A Brief History of Magnetism

 13th century BC
 Chinese used a compass

 Uses a magnetic needle
 Probably an invention of Arabic or Indian origin

 800 BC
 Greeks

 Discovered magnetite (Fe3O4) attracts pieces of iron



  

A Brief History of Magnetism

 The mid-oceanic ridge between N. America 
and Europe shows that Earth’s magnetic field 
has switched polarity.

Figures by the USGS



  

Magnetic Poles

 Every magnet, regardless of its shape, has 
two poles
 Called north and south poles
 Poles exert forces on one another

 Similar to the way electric charges exert forces on 
each other

 Like poles repel each other
 N-N or S-S

 Unlike poles attract each other
 N-S 



  

Magnetic Poles, cont.

 The poles received their names due to the way a 
magnet behaves in the Earth’s magnetic field

 If a bar magnet is suspended so that it can move 
freely, it will rotate
 The magnet’s north pole points toward the Earth’s north 

geographic pole
 This means the Earth’s north geographic pole is a magnetic 

south pole
 Similarly, the Earth’s south geographic pole is a magnetic 

north pole



  

Magnetic Poles, final

 The force between two poles varies as the 
inverse square of the distance between them

 A single magnetic pole has never been 
isolated (“No magnetic monopoles”)
 In other words, magnetic poles are always found 

in pairs
 All attempts so far to detect an isolated magnetic 

pole has been unsuccessful
 No matter how many times a permanent magnetic is 

cut in two, each piece always has a north and south 
pole



  

Magnetic Fields

 Reminder:  an electric field surrounds any 
electric charge

 The region of space surrounding any moving 
electric charge also contains a magnetic field

 A magnetic field also surrounds a magnetic 
substance making up a permanent magnet



  

Magnetic Fields, cont.

 A vector quantity
 Symbolized by
 Direction is given by the direction a north pole 

of a compass needle points in that location
 Magnetic field lines can be traced out by a 

compass

B⃗



  

Magnetic Field Lines, Bar 
Magnet Example

 The compass can be 
used to trace the field 
lines

 The lines outside the 
magnet point from the 
North pole to the South 
pole

 Inside, lines point South 
to North, continuing the 
loops

PLAY
ACTIVE FIGURE



  

Magnetic Field Lines, Bar 
Magnet

 Iron filings are used to 
show the pattern of the 
magnetic field lines

 The direction of the 
field is the direction a 
north pole would point



  

Magnetic Field Lines, Unlike 
Poles

 Iron filings are used to 
show the pattern of the 
magnetic field lines

 The direction of the 
field is the direction a 
north pole would point
 Compare to the electric 

field produced by an 
electric dipole



  

Magnetic Field Lines, Like 
Poles

 Iron filings are used to 
show the pattern of the 
magnetic field lines

 The direction of the 
field is the direction a 
north pole would point
 Compare to the electric 

field produced by like 
charges



  

Definition of Magnetic Field

 The magnetic field at some point in space 
can be defined in terms of the magnetic 
force, 

 The magnetic force will be exerted on a 
charged particle moving with a velocity, 
 Assume (for now) there are no gravitational or 

electric fields present

F⃗B

v⃗



  

Force on a Charge Moving in a 
Magnetic Field

 The magnitude FB of the magnetic force 
exerted on the particle is proportional to the 
charge, q, and to the speed, v, of the particle

 When a charged particle moves parallel to the 
magnetic field vector, the magnetic force 
acting on the particle is zero

 When the particle’s velocity vector makes any 
angle  0 with the field, the force acts in a 
direction perpendicular to both the velocity 
and the field 



  

FB on a Charge Moving in a 
Magnetic Field, final

 The magnetic force exerted on a positive 
charge is in the direction opposite the 
direction of the magnetic force exerted on a 
negative charge moving in the same direction

 The magnitude of the magnetic force is 
proportional to sin , where  is the angle the 
particle’s velocity makes with the direction of 
the magnetic field



  

More About Direction

     is perpendicular to the plane formed by    and
 Oppositely directed forces exerted on oppositely 

charged particles will cause the particles to move in 
opposite directions

v⃗F⃗B B⃗



  

Force on a Charge Moving in a 
Magnetic Field, Formula

 The properties can be summarized in a 
vector equation:

     is the magnetic force
 q is the charge
    is the velocity of the moving charge
     is the magnetic field

F⃗B=q ( v⃗×B⃗ )

F⃗B

B⃗

v⃗



  

Direction: Right-Hand Rule #1
 The fingers point in the 

direction of v 
 Orient hand so fingers 

bend towards B  

 The thumb points in the 
direction of  FB      
which is the direction of 
the force on the 
particle.  



  

More About Magnitude of F

 The magnitude of the magnetic force on a 
charged particle is FB = |q| v B sin 
  is the smaller angle between v and B
 FB is zero when the field and velocity are parallel 

or antiparallel
  = 0 or 180o

 FB is a maximum when the field and velocity are 
perpendicular
  = 90o



  

Differences Between Electric 
and Magnetic Fields

 Direction of force
 The electric force acts along the direction of the 

electric field
 The magnetic force acts perpendicular to the 

magnetic field
 Motion

 The electric force acts on a charged particle 
regardless of whether the particle is moving

 The magnetic force acts on a charged particle 
only when the particle is in motion



  

More Differences Between 
Electric and Magnetic Fields

 Work
 The electric force does work in displacing a 

charged particle
 The magnetic force associated with a steady 

magnetic field does no work when a particle is 
displaced
This is because the force is perpendicular to 

the displacement



  

Work in Fields, cont.

 The kinetic energy of a charged particle 
moving through a magnetic field cannot be 
altered by the magnetic field alone

 When a charged particle moves with a given 
velocity through a magnetic field, the field can 
alter the direction of the velocity, but not the 
speed or the kinetic energy



  

Units of Magnetic Field

 The SI unit of magnetic field is the tesla (T)

  (Technically, a tesla is a magnetic flux density.
It can be multiplied by an area to get total
magnetic flux through that area measured in

weber, Wb.  )
 Wb is a weber

 A non-SI commonly used unit is a gauss (G)
 1 T = 104 G



  

Notation Notes

 When vectors are 
perpendicular to the 
page, dots and crosses 
are used
 The dots represent the 

arrows coming out of the 
page

 The crosses represent 
the arrows going into the 
page



  

Charged Particle in a Magnetic 
Field
 Consider a particle moving 

in an external magnetic field 
with its velocity 
perpendicular to the field

 The force is always directed 
toward the center of the 
circular path

 The magnetic force causes 
a centripetal acceleration, 
changing the direction of the 
velocity of the particle

PLAY
ACTIVE FIGURE



  

Force on a Charged Particle

 For q in uniform circular motion:
 Equating the magnetic and centripetal forces:

 Solving for r:

 r is proportional to the linear momentum of the particle 
and inversely proportional to the magnetic field

qvB=
mv2

r

r=
mv
qB

q v⃗×B⃗ =qvB



  

More About Motion of Charged 
Particle

 The angular speed of the particle is 

 The angular speed, , is also referred to as the 
cyclotron frequency

 The period of the motion is 

ω=
v
r
=

qB
m

P=
2 π
ω



  

Motion of a Particle, General

 If a charged particle moves 
in a magnetic field at some 
arbitrary angle with respect 
to the field, its path is a helix

 Same equations apply, with

 Use the active figure to vary 
the initial velocity and 
observe the resulting motion 

2 2
y zv v v

⊥
= +

PLAY
ACTIVE FIGURE



  

Bending of an Electron Beam

 Electrons are 
accelerated from rest 
through a potential 
difference

 The electrons travel in 
a curved path

 Conservation of energy 
will give v

 Other parameters can 
be found



  

Particle in a Nonuniform 
Magnetic Field

 The motion is complex
 For example, the 

particles can oscillate 
back and forth between 
two positions

 This configuration is 
known as a magnetic 
bottle



  

Van Allen Radiation Belts

 The Van Allen radiation 
belts consist of charged 
particles surrounding the 
Earth in doughnut-shaped 
regions

 The particles are trapped by 
the Earth’s magnetic field

 The particles spiral from 
pole to pole
 May result in Auroras



  

Charged Particles Moving in 
Electric and Magnetic Fields

 In many applications, charged particles will 
move in the presence of both magnetic and 
electric fields

 In that case, the total force is the sum of the 
forces due to the individual fields

 In general: 
F⃗ =q  { E⃗ +( v⃗×B⃗ ) }



  

Velocity Selector

 Used when particles of 
a certain velocity are 
needed.

 A uniform electric field 
is perpendicular to a 
uniform magnetic field

PLAY
ACTIVE FIGURE



  

Velocity Selector, cont.

 When the force due to the electric field is 
equal but opposite to the force due to the 
magnetic field, the particle moves in a 
straight line

 This occurs for velocities of value 
v = E / B



  

Mass Spectrometer

 A mass spectrometer 
separates ions 
according to their 
mass-to-charge ratio

 A beam of ions passes 
through a velocity 
selector and enters a 
second magnetic field

PLAY
ACTIVE FIGURE



  

Mass Spectrometer, cont.

 After entering the second magnetic field, the 
ions move in a semicircle of radius r before 
striking a detector at P

 If the ions are positively charged, they deflect 
to the left

 If the ions are negatively charged, they 
deflect to the right



  

Thomson’s e/m Experiment

 Electrons are 
accelerated from the 
cathode

 They are deflected by 
electric and magnetic 
fields

 The beam of electrons 
strikes a fluorescent 
screen

 e/m was measured



  

Cyclotron

 A cyclotron is a device that can accelerate 
charged particles to very high speeds

 The energetic particles produced are used to 
bombard atomic nuclei and thereby produce 
reactions

 These reactions can be analyzed by 
researchers



  

Cyclotron, 2

 D1 and D2 are called 
dees because of their 
shape

 A high frequency 
alternating potential is 
applied to the dees

 A uniform magnetic 
field is perpendicular to 
them



  

Cyclotron, 3

 A positive ion is released near the center and 
moves in a semicircular path

 The potential difference is adjusted so that 
the polarity of the dees is reversed in the 
same time interval as the particle travels 
around one dee

 This ensures the kinetic energy of the particle 
increases each trip



  

Cyclotron, final

 The cyclotron’s operation is based on the fact 
that T is independent of the speed of the 
particles and of the radius of their path

 When the energy of the ions in a cyclotron 
exceeds about 20 MeV, relativistic effects 
come into play

2 2 2
21

2 2

q B R
K mv

m
= =



  

Magnetic Force on a Current 
Carrying Conductor

 A force is exerted on a current-carrying wire 
placed in a magnetic field
 The current is a collection of many charged 

particles in motion
 The direction of the force is given by the 

right-hand rule



  

Force on a Wire

 In this case, there is no 
current, so there is no 
force

 Therefore, the wire 
remains vertical



  

Force on a Wire (2)

 The magnetic field is 
into the page

 The current is up the 
page

 The force is to the left



  

Force on a Wire, (3) 

 The magnetic field is 
into the page

 The current is down the 
page

 The force is to the right



  

Force on a Wire, equation

 The magnetic force is 
exerted on each 
moving charge in the 
wire
  

 The total force is the 
product of the force on 
one charge and the 
number of charges
  

F⃗ =q  ( v⃗ d×B⃗ )

F⃗=(q v⃗d×B⃗ ) nAL



  

Force on a Wire, (4)

 In terms of the current, this becomes  

 I is the current
    is a vector that points in the direction of the 

current
 Its magnitude is the length L of the segment

    is the magnetic field

F⃗B=I L⃗×B⃗

L⃗

B⃗



  

Force on a Wire, Arbitrary 
Shape

 Consider a small 
segment of the wire, 

 The force exerted on 
this segment is 

 The total force is
d F⃗ B=I d s⃗×B⃗

F⃗B=∫ I d s⃗×B⃗



  

Torque on a Current Loop

 The rectangular loop 
carries a current I in a 
uniform magnetic field

 No magnetic force acts 
on sides 1 & 3
 The wires are parallel to 

the field and 0× =L B
r r



  

Torque on a Current Loop, 2

 There is a force on sides 2 
& 4 since they are 
perpendicular to the field

 The magnitude of the 
magnetic force on these 
sides will be:
  F2 = F4 = I a B

 The direction of F2 is out of 
the page

 The direction of F4 is into 
the page



  

Torque on a Current Loop, 3

 The forces are equal 
and in opposite 
directions, but not along 
the same line of action

 The forces produce a 
torque around point O

View loop from below:



  

Torque on a Current Loop, 
Equation

 The maximum torque is found by:

 The area enclosed by the loop is ab, so τmax 
= IAB
 This maximum value occurs only when the field is 

parallel to the plane of the loop

τ=IaB
b
2

+IaB
b
2

=IaBb



  

Torque on a Current Loop, 
General

 Assume the magnetic 
field makes an angle of 

< 90o with a line 
perpendicular to the 
plane of the loop

 The net torque about 
point O will be τ = IAB 
sin 

 Use the active figure to 
vary the initial settings 
and observe the 
resulting motion

PLAY
ACTIVE FIGURE



  

Torque on a Current Loop, 
Summary

 The torque has a maximum value when the 
field is perpendicular to the normal to the 
plane of the loop

 The torque is zero when the field is parallel to 
the normal to the plane of the loop

                  where     is perpendicular to the 
plane of the loop and has a magnitude equal 
to the area of the loop

τ=I A⃗×B⃗ A⃗



  

Direction

 A right-hand rule can 
be used to determine 
the direction of  

 Curl your fingers in the 
direction of the current 
in the loop

 Your thumb points in 
the direction of 

A
r

A
r



  

Hall Effect

 When a current carrying conductor is placed 
in a magnetic field, a potential difference is 
generated in a direction perpendicular to both 
the current and the magnetic field

 This phenomena is known as the Hall effect
 It arises from the deflection of charge carriers 

to one side of the conductor as a result of the 
magnetic forces they experience



  

Hall Effect, cont.

 The Hall effect gives information regarding 
the sign of the charge carriers and their 
density

 It can also be used to measure magnetic 
fields



  

Hall Voltage

 This shows an 
arrangement for 
observing the Hall 
effect

 The Hall voltage is 
measured between 
points a and c



  

Hall Voltage, cont

 When the charge carriers are negative, the upper edge of the 
conductor becomes negatively charged
 c is at a lower potential than a

 When the charge carriers are positive, the upper edge 
becomes positively charged
 c is at a higher potential than a



  

Hall Voltage, final

 VH = EHd = vd B d
 d is the width of the conductor
 vd is the drift velocity
 If B and d are known, vd can be found

  

 RH = 1 / nq is called the Hall coefficient
 A properly calibrated conductor can be used to measure 

the magnitude of an unknown magnetic field

H
H

I IB R B
V

nqt t
Δ = =
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