PHYS 2321 Week 6: Capacitance

W6 Day 1 Outline

1) Hwk: Ch. 24 MiscQ. 1-13 odd Due Friday

Prob. 1,5,6,7,10,11,13,16,21,22,24,38,39,40,53

2) Capacitors and capacitance

a. Examples of capacitors

- b. $C \equiv Q/\Delta V$ = charge per volt across capacitor
- b. $C = A\epsilon_0/d$ for parallel plate capacitor

3) Review Exam I (mean = 14.6/30)

Notes:

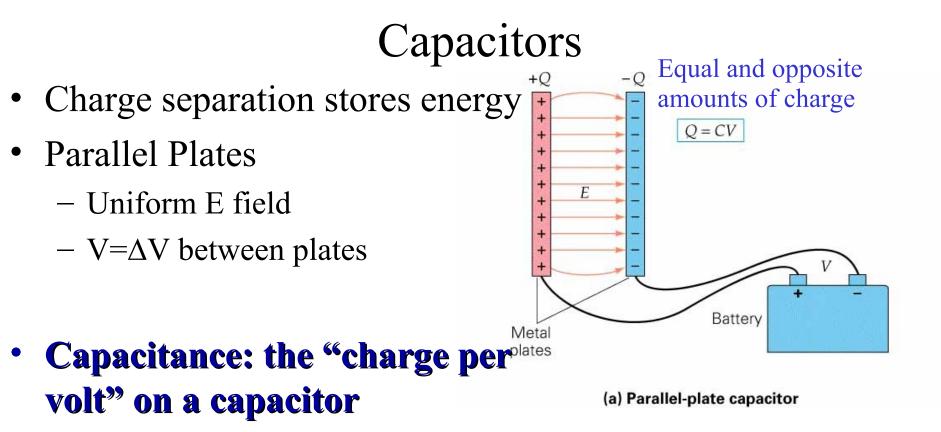
Try Practice Quiz for Ch. 24.

Watch YouTube video by Khan Academy

Types of capacitors

By Eric Schrader from San Francisco, CA, United States - 12739s, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=37625896

PHYS 2321 Week6: Capacitance


W6 Day 2 Outline

1) Hwk: Ch. 24 MiscQ. 1-13 odd Due Friday Prob. 1,5,6,7,10,11,13,16,21,22,24,38,39,40,53

- 2) Capacitors and capacitance
 - a. $C \equiv Q/\Delta V$ = charge per volt across capacitor
 - b. Calculating capacitances
 - c. $C = A\epsilon_0/d$ for parallel plate capacitor
 - d. Parallel and series connections

Notes:

How Ch. 23 mean = 9.2/10 (checked P. 12,25, MQ 1,3,5) Pick up Exam I after class (if you haven't already). Try Practice Quiz for Ch. 24. Watch YouTube video by Khan Academy

Capacitance governs ...

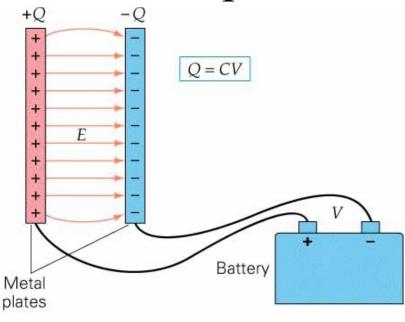
 $C \equiv \frac{Q}{V}$

How much charge is required to produce 1 volt "on" the capacitor (Q=CV), What the potential difference will be if +-Q of charge is on the plates. (V=Q/C)

Units: 1 Farad = 1 Coulomb/Volt

Compute Capacitance of P.Plate Capacitor

1) Determine E-field between plates.


$$E = \frac{\sigma}{2\epsilon_0} + \frac{\sigma}{2\epsilon_0} = \frac{\sigma}{\epsilon_0}$$

2) Find $|\Delta V|$. $|\Delta V| = Ed \equiv \frac{\sigma d}{\epsilon_0} = \frac{Qd}{A\epsilon_0}$ 3) Insert into C=Q/ ΔV , and 4) Eliminate Q:

$$C = \frac{QA\epsilon_0}{Qd} = \frac{A\epsilon_0}{d}$$

5) Add k for dielectric:

$$C = \kappa \frac{A\epsilon_0}{d}$$

(a) Parallel-plate capacitor

For Parallel Plates only $\varepsilon_o = 8.85 \times 10^{-12} \frac{C^2}{N \cdot m^2}$

Calculating Capacitance

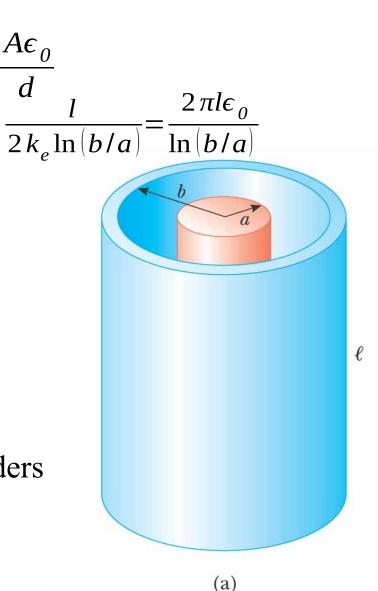
- 1) Determine E inside capacitor. (May need Gauss's law.) $\Delta V = -\int_{a}^{b} \vec{E} \cdot d\vec{s}$
- 2) Determine ΔV between the plates.
- 3) Insert ΔV into $C = Q/\Delta V$.
- 4) Cancel the Q's.
- 5) Consider the dielectric filler. (

Example: concentric spheres

$$C_{spheres} = \frac{ab}{k_e(b-a)}$$

$$C = \kappa C_0$$
 $-Q$
 $+Q/a$
 b
 b

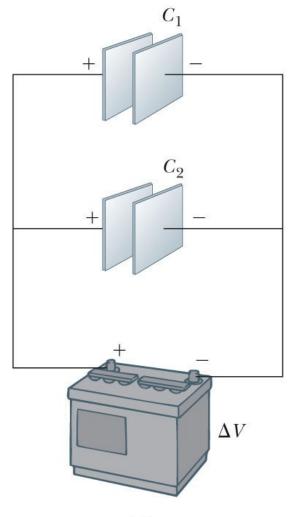
Calculating Capacitance


Other examples:

- 1) Parallel plates
- 2) Concentric cylinders

3) Single sphere

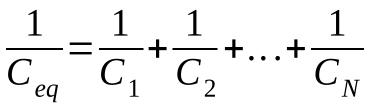
 $C=4\pi\epsilon_0 R$


Example: concentric cylinders

Combining Capacitors

- Two fundamental arrangements: parallel and series.
- Characteristics of a <u>parallel</u> connection:

- 1) The same ΔV is across each capacitor.
- 2) If C1 \neq C2, than Q1 \neq Q2. (In general, the charges are unequal.)
- 3) Since the total area of the plates is greater for 2 capacitors than 1, the equivalent capacitance goes up.
- 4) For N capacitors in parallel: $Ceq = C_1 + C_2 + C_3 + ... + C_N$



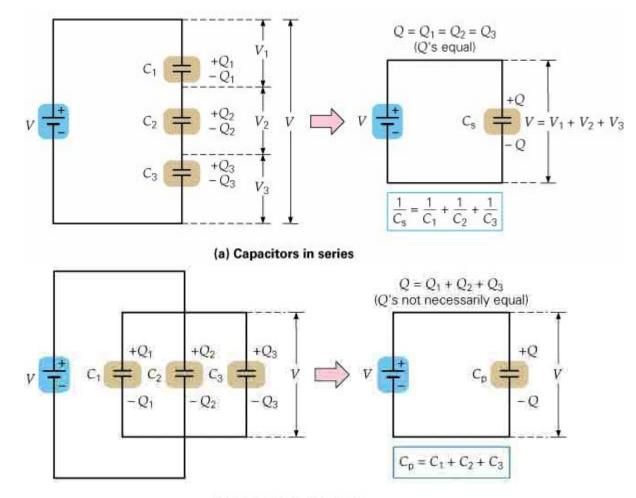
Combining Capacitors

 ΔV_1

• Characteristics of a <u>series</u> connection:

- 1) The same charge Q exists on each plate!
- 2) If $C_1 \neq C_2$, then $\Delta V_1 \neq \Delta V_2$. (The voltage can be different on each cap...)
- 3) The sum of the ΔV 's is the ΔV across the battery.
- 4) The equivalent capacitance is less than even the smallest capacitor in series.
- 5) For N capacitors in series:

(a)

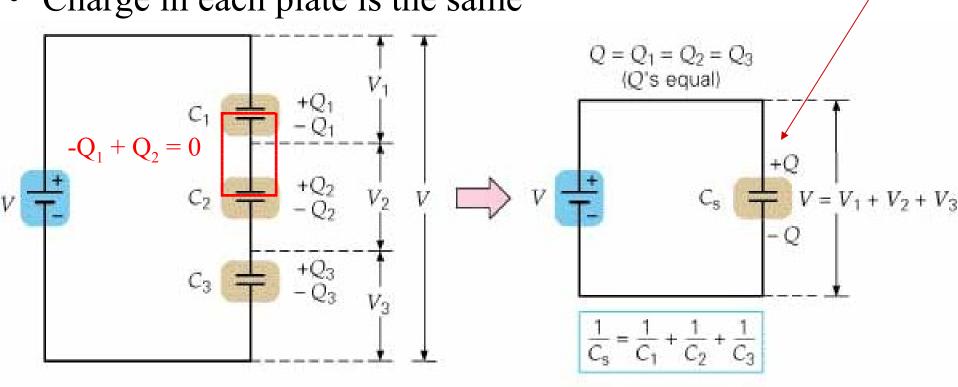

Co

 ΔV

 ΔV_{9}

Combining Capacitors

• Goal: combine them into one *equivalent capacitance*

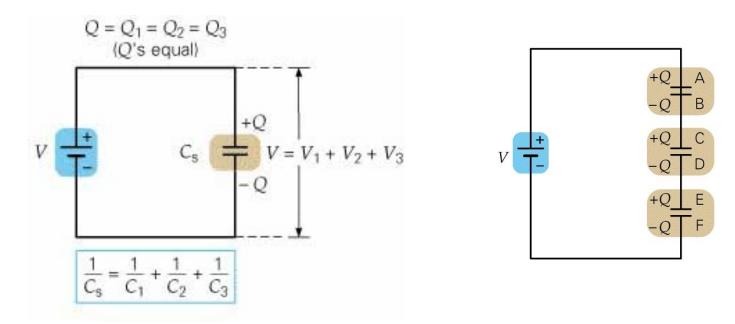


(b) Capacitors in parallel

Capacitors in Series

• Charge in each plate is the same

Equivalent capacitor

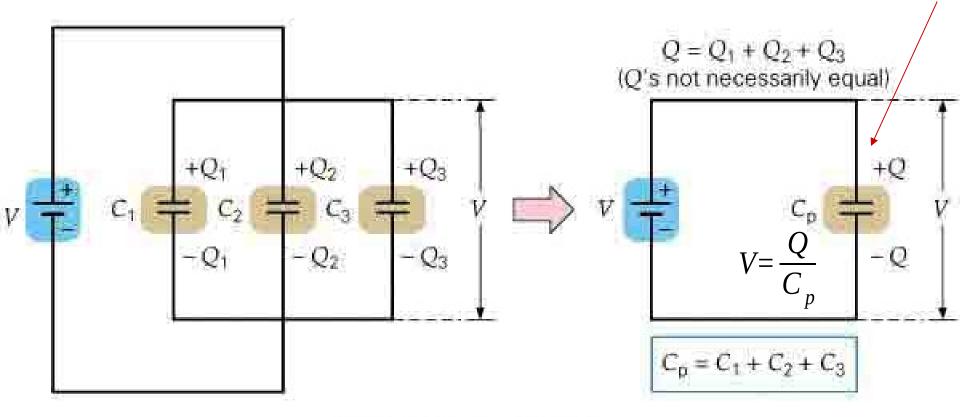

(a) Capacitors in series

$$C_1 = \frac{Q}{V_1}, C_2 = \frac{Q}{V_2}, C_3 = \frac{Q}{V_3}$$

$$V_{1} = \frac{Q}{C_{1}}, V_{2} = \frac{Q}{C_{2}}, V_{3} = \frac{Q}{C_{3}}$$
$$V = V_{1} + V_{2} + V_{3}, V = \frac{Q}{C_{5}}$$

Capacitors in Series

• Usually get C_s to get Q, then figure out the V's



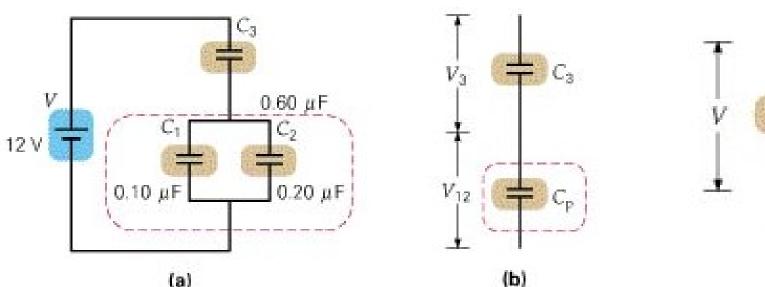
• Now expand the circuit back out

$$V_1 = \frac{Q}{C_1} V_2 = \frac{Q}{C_2} V_3 = \frac{Q}{C_3}$$

Capacitors in Parallel

• Voltage on each plate is the same $V=V_1=V_2=V_3$ Equivalent capacitor

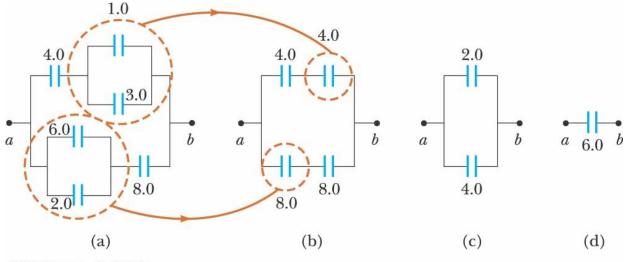
(b) Capacitors in parallel


 $Q = Q_1 + Q_2 + Q_3$

$$Q_1 = C_1 V Q_2 = C_2 V Q_3 = C_3 V$$

Combinations of Series and Parallel

(c)

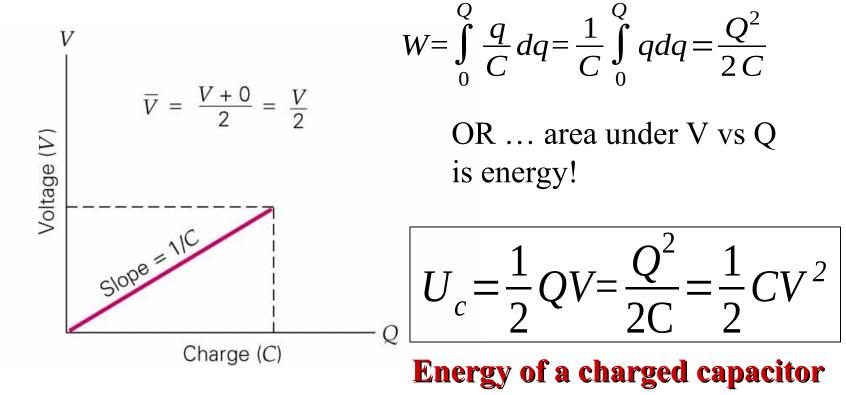

• Get to one equivalent capacitor

First combine C_1 and C_2 that are in parallel Second combine C_{12} (C_p in diagram) and C_3 in series

CANNOT DO THE FOLLOWING: C₃ and C₁ in series, then C₂ in parallel or series C₃ and C₂ in series, then C₁

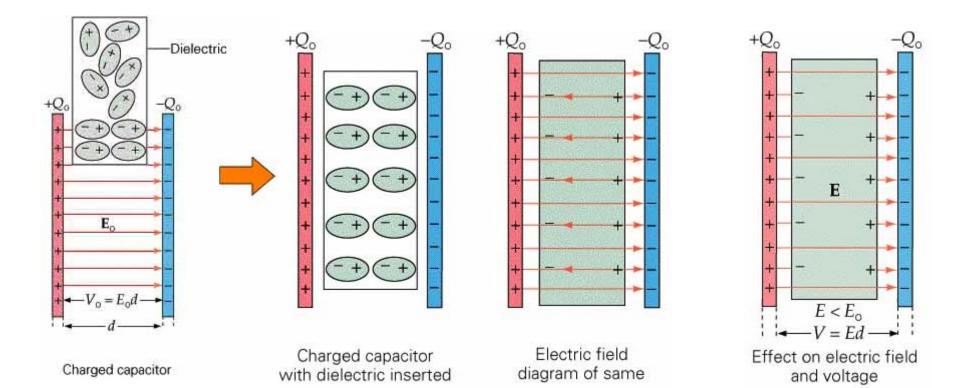
Equivalent Capacitance, Example

©2004 Thomson - Brooks/Cole


The 1.0- μ F and 3.0- μ F capacitors are in parallel as are the 6.0- μ F and 2.0- μ F capacitors

These parallel combinations are in series with the capacitors next to them The series combinations are in parallel and the final equivalent capacitance can be found

Energy in a capacitor


- It takes energy to separate charge (& create E-field)
- The battery provides it, but that involves chemistry.
- Instead imagine charging plates "by hand"
 - Work by hand to move charge dq: $dW = dq\Delta V = dqq/C$

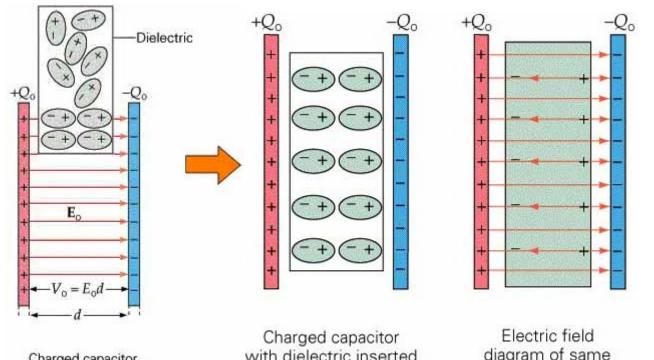
- Total work to move all charge:

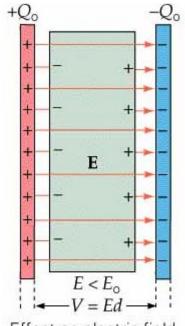
Dielectrics

Capacitor charged and <u>battery disconnected</u>
 – Q is constant - nowhere to go!

TABLE 26.1

Material	Dielectric Constant ĸ	Dielectric Strength ^a (10 ⁶ V/m)
Air (dry)	1.00059	3
Bakelite	4.9	24
Fused quartz	3.78	8
Mylar	3.2	7
Neoprene rubber	6.7	12
Nylon	3.4	14
Paper	3.7	16
Paraffin-impregnated paper	3.5	11
Polystyrene	2.56	24
Polyvinyl chloride	3.4	40
Porcelain	6	12
Pyrex glass	5.6	14
Silicone oil	2.5	15
Strontium titanate	233	8
Teflon	2.1	60
Vacuum	$1.000\ 00$	_
Water	80	_

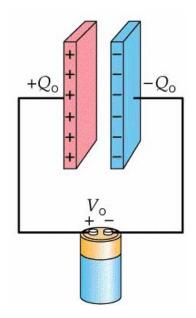

Approximate Dielectric Constants and Dielectric Strengths of Various Materials at Room Temperature

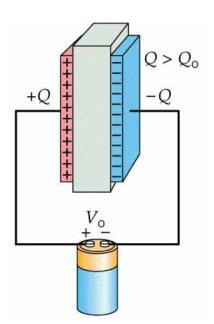

^a The dielectric strength equals the maximum electric field that can exist in a dielectric without electrical breakdown. These values depend strongly on the presence of impurities and flaws in the materials.

© Thomson Higher Education

Dielectrics

- Determine whether κ is greater than or less than 1:
 - 1) Molecules in dielectric get polarized
 - 2) Electric field between plates is reduced (Q is constant)
 - 3) ΔV across plates is reduced (remember $\Delta V = -Ed$)
 - 4) U=1/2 Q Δ V is reduced, and so will be U=1/2 Q²/C
 - 5) Q is constant, so C must have increased.
 - 6) C = κ C₀ so $\kappa > 1$


Effect on electric field and voltage


Dielectrics

• Parallel Plates

$$C_o = \varepsilon_o \frac{A}{d} \qquad \qquad C = \varepsilon \frac{A}{d} = K \varepsilon_o \frac{A}{d}$$

Dielectric **<u>permittivity</u>** $\varepsilon = K\varepsilon_o$

