# Chapter 16

#### Sound Waves

#### PHYS 2321 Week 13: Sound

Day 3 Outline



1) Hwk: Ch. 16, P. 2,3,5,7,11,17,20,30,33,47,49 Due Mon after break

2) Ch. 16 – Sound

- \* (Sound waves in terms of P,  $\rho$ , s) skim
- \* Speed of sound temperature dependence
- \* Demo: resonant tube
- \* Power and intensity of sound waves

Notes: Ch. 29 hwk mean = 9.4/10

#### PHYS 2321 Week 14: Sound/Optics

Day 1 Outline



 Hwk: Ch. 16, P. 2,3,5,7,11,17,20,30,33,47,49 Due <3 pm Do take home quiz on waves for Wed. Ch. 32, MiscQs P. Due Mon

2) Ch. 16 – Sound

\* Power and intensity of sound waves

\* Beats. [Demo]

3) Ch. 32 Light: Reflection and Refraction.

\* Ray model (vs wave or particle models)\* Law of reflection

Notes: Please do course evaluations.

#### **Introduction to Sound Waves**



- Sound waves are longitudinal waves
- They travel through any material medium
- The speed of the wave depends on the properties of the medium
- The mathematical description of sinusoidal sound waves is very similar to sinusoidal waves on a string

#### **Categories of Sound Waves**

- The categories cover different frequency ranges
- Audible waves are within the sensitivity of the human ear
  - Range is approximately 20 Hz to 20 kHz
- Infrasonic waves have frequencies below the audible range
- Ultrasonic waves have frequencies above the audible range



#### **Speed of Sound Waves**

- Use a compressible gas as an example with a setup as shown at right
- Before the piston is moved, the gas has uniform density
- When the piston is suddenly moved to the right, the gas just in front of it is compressed
  - Darker region in the diagram



© 2007 Thomson Higher Education



## Speed of Sound Waves, cont

- When the piston comes to rest, the compression region of the gas continues to move
  - This corresponds to a longitudinal pulse traveling through the tube with speed v
  - The speed of the piston is not the same as the speed of the wave



#### Speed of Sound Waves, General



- The speed of sound waves in a medium depends on the compressibility and the density of the medium
- The compressibility can sometimes be expressed in terms of the elastic modulus of the material
- The speed of all mechanical waves follows a general form:

$$v = \sqrt{\frac{\text{elastic property}}{\text{inertial property}}}$$

# Speed of Sound in Liquid or Gas

- The bulk modulus of the material is B
- $\bullet$  The density of the material is  $\rho$
- The speed of sound in that medium is

$$v = \sqrt{\frac{B}{\rho}}$$



#### **Speed of Sound in Air**



- The speed of sound also depends on the temperature of the medium
- This is particularly important with gases
- For air, the relationship between the speed and temperature is

$$v = (331 \, m/s) \left( 1 + \frac{Tc}{273} \right)$$

- The 331 m/s is the speed at 0° C
- T<sub>c</sub> is the air temperature in Celsius

#### Speed of Sound in Gases, Example Values

| $\bullet \bullet \bullet$                 |
|-------------------------------------------|
| $\bullet \bullet \bullet \bullet$         |
| $\bullet \bullet \bullet \bullet \bullet$ |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |

| Medium         | v (m/s)  |
|----------------|----------|
| Gases          |          |
| Hydrogen (0°C) | $1\ 286$ |
| Helium (0°C)   | 972      |
| Air (20°C)     | 343      |
| Air (0°C)      | 331      |
| Oxygen (0°C)   | 317      |

#### Speed of Sound in Liquids, Example Values



| Medium               | v (m/s)  |
|----------------------|----------|
| Liquids at 25°C      |          |
| Glycerol             | $1\ 904$ |
| Seawater             | $1\ 533$ |
| Water                | $1\ 493$ |
| Mercury              | $1\ 450$ |
| Kerosene             | 1 324    |
| Methyl alcohol       | 1 1 4 3  |
| Carbon tetrachloride | 926      |

Speeds are in m/s

#### Speed of Sound in Solids, Example Values



| Medium              | $v ({ m m/s})$ |
|---------------------|----------------|
| Solids <sup>a</sup> |                |
| Pyrex glass         | $5\ 640$       |
| Iron                | 5 950          |
| Aluminum            | $6\ 420$       |
| Brass               | 4 700          |
| Copper              | $5\ 010$       |
| Gold                | 3 240          |
| Lucite              | 2 680          |
| Lead                | $1\ 960$       |
| Rubber              | 1 600          |

Speeds are in m/s; values are for bulk solids

#### Periodic Sound Waves, Example

- A longitudinal wave is propagating through a gasfilled tube
- The source of the wave is an oscillating piston
- The distance between two successive compressions (or rarefactions) is the wavelength
- Use the active figure to vary the frequency of the piston



© 2007 Thomson Higher Education

#### Periodic Sound Waves, cont



- As the regions travel through the tube, any small element of the medium moves with simple harmonic motion parallel to the direction of the wave
- The harmonic position function is

$$s(x, t) = s_{max} \cos(kx - \omega t)$$

- s<sub>max</sub> is the maximum position from the equilibrium position
- This is also called the displacement amplitude of the wave

#### **Periodic Sound Waves, Pressure**



The variation in gas pressure, ∆P, is also periodic

 $\Delta P = \Delta P_{max} \sin (kx - \omega t)$ 

- $\Delta P_{max}$  is the pressure amplitude
- It is also given by  $\Delta P_{max} = \rho v \omega s_{max}$
- k is the wave number (in both equations)
- $\omega$  is the angular frequency (in both equations)



#### **Periodic Sound Waves, final**

- A sound wave may be considered either a displacement wave or a pressure wave
- The pressure wave is 90° out of phase with the displacement wave
  - The pressure is a maximum when the displacement is zero, etc.



#### **Energy of Periodic Sound** Waves

- Consider an element of air with mass *Am* and length *Ax*
- The piston transmits energy to the element of air in the tube
- This energy is propagated away from the piston by the sound wave





#### Energy, cont.



- The kinetic energy in one wavelength is  $K_{\lambda} = \frac{1}{4} (\rho A) \omega^2 s_{max}^2 \lambda$
- The total potential energy for one wavelength is the same as the kinetic
- The total mechanical energy is

 $E_{\lambda} = K_{\lambda} + U_{\lambda} = \frac{1}{2} (\rho A) \omega^2 S_{\text{max}}^2 \lambda$ 

#### **Power of a Periodic Sound Wave**

 The rate of energy transfer is the power of the wave

$$\wp = \frac{\Delta E}{\Delta t} = \frac{E_{\lambda}}{T} = \frac{1}{2} \rho A v \omega^2 s_{\text{max}}^2$$

 This is the energy that passes by a given point during one period of oscillation

#### Intensity of a Periodic Sound Wave



- The intensity, *I*, of a wave is defined as the power per unit area
  - This is the rate at which the energy being transported by the wave transfers through a unit area, *A*, perpendicular to the direction of the wave

$$I = \frac{i}{A}$$

#### Intensity, cont



- In the case of our example wave in air,
  - $I = \frac{1}{2} \rho V(\omega S_{max})^2$
- Therefore, the intensity of a periodic sound wave is proportional to the
  - Square of the displacement amplitude
  - Square of the angular frequency
- In terms of the pressure amplitude,

$$I = \frac{(\Delta P_{\max})^2}{2\rho v}$$



### Intensity of a Point Source

- A point source will emit sound waves equally in all directions
  - This results in a spherical wave
- Identify an imaginary sphere of radius r centered on the source
- The power will be distributed equally through the area of the sphere

# Intensity of a Point Source, cont

• 
$$I = \frac{P_{av}}{A} = \frac{P_{av}}{4\pi r^2}$$

- This is an inversesquare law
  - The intensity decreases in proportion to the square of the distance from the source



© 2007 Thomson Higher Education

#### **Sound Level**



- The range of intensities detectable by the human ear is very large
- It is convenient to use a logarithmic scale to determine the intensity level,  $\beta$

$$\beta = 10 \log \left(\frac{I}{I_o}\right)$$

#### Sound Level, cont



- I<sub>0</sub> is called the **reference intensity** 
  - It is taken to be the threshold of hearing
  - $I_0 = 1.00 \times 10^{-12} \text{ W/ m}^2$
  - I is the intensity of the sound whose level is to be determined
- β is in decibels (dB)
- Threshold of pain: I = 1.00 W/m<sup>2</sup>;  $\beta$  = 120 dB
- Threshold of hearing:  $I_0 = 1.00 \times 10^{-12} \text{ W/ m}^2$  corresponds to  $\beta = 0 \text{ dB}$

#### Sound Level, Example



- What is the sound level that corresponds to an intensity of 2.0 x 10<sup>-7</sup> W/m<sup>2</sup> ?
- $\beta$  = 10 log (2.0 x 10<sup>-7</sup> W/m<sup>2</sup> / 1.0 x 10<sup>-12</sup> W/m<sup>2</sup>) = 10 log 2.0 x 10<sup>5</sup> = 53 dB
- Rule of thumb: A doubling in the intensity is approximately equivalent to an increase of 3 dB

#### **Sound Levels**

#### **TABLE 17.2**

| Sound Levels         |              |
|----------------------|--------------|
| Source of Sound      | $\beta$ (dB) |
| Nearby jet airplane  | 150          |
| Jackhammer;          |              |
| machine gun          | 130          |
| Siren; rock concert  | 120          |
| Subway; power lawn   |              |
| mower                | 100          |
| Busy traffic         | 80           |
| Vacuum cleaner       | 70           |
| Normal conversation  | 50           |
| Mosquito buzzing     | 40           |
| Whisper              | 30           |
| Rustling leaves      | 10           |
| Threshold of hearing | 0            |



© 2007 Thomson Higher Education

#### **Loudness and Intensity**



- Sound level in decibels relates to a physical measurement of the strength of a sound
- We can also describe a *psychological "measurement"* of the strength of a sound
- Our bodies "calibrate" a sound by comparing it to a reference sound
- This would be the threshold of hearing
- Actually, the threshold of hearing is this value for 1000 Hz



#### Loudness and Frequency, cont

- There is a complex relationship between loudness and frequency
- The white area shows average human response to sound
- The lower curve of the white area shows the threshold of hearing
- The upper curve shows the threshold of pain



#### **The Doppler Effect**



- The Doppler effect is the apparent change in frequency (or wavelength) that occurs because of motion of the source or observer of a wave
  - When the relative speed of the source and observer is higher than the speed of the wave, the frequency appears to increase
  - When the relative speed of the source and observer is lower than the speed of the wave, the frequency appears to decrease



#### **Doppler Effect, Observer Moving**

- The observer moves with a speed of v<sub>o</sub>
- Assume a point source that remains stationary relative to the air
- It is convenient to represent the waves with a series of circular arcs concentric to the source
  - These surfaces are called wave fronts



© 2007 Thomson Higher Educatio

### Doppler Effect, Observer Moving, cont



- The distance between adjacent wave fronts is the wavelength
- The speed of the sound is v, the frequency is f, and the wavelength is λ
- When the observer moves toward the source, the speed of the waves relative to the observer is v ' = v + v<sub>o</sub>
  - The wavelength is unchanged

### Doppler Effect, Observer Moving, final

 The frequency heard by the observer, f', appears higher when the observer approaches the source

$$f' = \left(\frac{v + v_o}{v}\right) f$$

• The frequency heard by the observer, f, appears lower when the observer moves away from the source

$$f' = \left(\frac{v - v_o}{v}\right) f$$



## **Doppler Effect, Source Moving**

- Consider the source being in motion while the observer is at rest
- As the source moves toward the observer, the wavelength appears shorter
- As the source moves away, the wavelength appears longer
  - Use the active figure to adjust the speed and observe the results



# Doppler Effect, Source Moving, cont

When the source is moving toward the observer, the apparent frequency is higher

$$f' = \left(\frac{v}{v - v_s}\right) f$$

 When the source is moving away from the observer, the apparent frequency is lower

$$f' = \left(\frac{v}{v + v_s}\right) f$$

### **Doppler Effect, General**



Combining the motions of the observer and the source

$$f' = \left(\frac{v + v_o}{v - v_s}\right) f$$

- The signs depend on the direction of the velocity
  - A positive value is used for motion of the observer or the source *toward* the other
  - A negative sign is used for motion of one away from the other

#### **Doppler Effect**, final



- Convenient rule for signs
  - The word "toward" is associated with an increase in the observed frequency
  - The words "away from" are associated with a decrease in the observed frequency
- The Doppler effect is common to all waves
- The Doppler effect does not depend on distance



#### **Doppler Effect, Water Example**

- A point source is moving to the right
- The wave fronts are closer on the right
- The wave fronts are farther apart on the left



(b)

© 2007 Thomson Higher Education

#### Doppler Effect, Submarine Example



- Sub A (source) travels at 8.00 m/s emitting at a frequency of 1400 Hz
- The speed of sound is 1533 m/s
- Sub B (observer) travels at 9.00 m/s
- What is the apparent frequency heard by the observer as the subs approach each other? Then as they recede from each other?

#### Doppler Effect, Submarine Example cont



• Approaching each other:

$$f' = \left(\frac{v + v_o}{v - v_s}\right) f = \left(\frac{1533 \text{ m/s} + (+9.00 \text{ m/s})}{1533 \text{ m/s} - (+8.00 \text{ m/s})}\right) (1400 \text{ Hz})$$
$$= 1416 \text{ Hz}$$

Receding from each other:

$$f' = \left(\frac{v + v_o}{v - v_s}\right) f = \left(\frac{1533 \text{ m/s} + (-9.00 \text{ m/s})}{1533 \text{ m/s} - (-8.00 \text{ m/s})}\right) (1400 \text{ Hz})$$
$$= 1385 \text{ Hz}$$

#### **Shock Wave**

- The speed of the source can exceed the speed of the wave
- The envelope of these wave fronts is a cone whose apex half-angle is given by sin  $\theta = v/v_s$ 
  - This is called the *Mach* angle



© 2007 Thomson Higher Education

#### **Mach Number**



- The ratio v<sub>s</sub> / v is referred to as the Mach number
- The relationship between the Mach angle and the Mach number is

$$\sin\theta = \frac{vt}{v_s t} = \frac{v}{v_s}$$

#### Shock Wave, final

- The conical wave front produced when v<sub>s</sub> > v is known as a shock wave
  - This is supersonic
- The shock wave carries a great deal of energy concentrated on the surface of the cone
- There are correspondingly great pressure variations





© 2007 Thomson Higher Education

#### **Sound Recording**



- Encoding sound waveforms began as variations in depth of a continuous groove cut in tin foil wrapped around a cylinder
- Sound was then recorded on cardboard cylinders coated with wax
- Next were disks made of shellac and clay
- In 1948, plastic phonograph disks were introduced



- In digital recording of sound, information is converted to binary code
- The waveforms of the sound are sampled
- During the sampling, the pressure of the wave is sampled and converted into a voltage
- The graph above shows the sampling process

### **Digital Recording, 2**



- These voltage measurements are then converted to binary numbers (1's and 0's)
  - Binary numbers are expressed in base 2
- Generally, the voltages are recorded in 16-bit "words"
  - Each bit is a 1 or a 0
- The number of voltage levels that can be assigned codes is 2<sup>16</sup> = 65 536

#### **Digital Recording**, 3



- The strings of ones and zeroes are recorded on the surface of the compact disc
- There is a laser playback system that detects lands and pits
  - Lands are the untouched regions
    - They are highly reflective
  - Pits are areas burned into the surface
    - They scatter light instead of reflecting it

#### **Digital Recording, final**

- The binary numbers from the CD are converted back into voltages
- The waveform is reconstructed
- Advantages
  - High fidelity of the sound
  - There is no mechanical wear on the disc
    - The information is extracted optically



#### **Motion Picture Sound**



- Early movies recorded sound on phonograph records
  - They were synchronized with the action on the screen
- Then a variable-area optical soundtrack was introduced
  - The sound was recorded on an optical track on the edge of the film
  - The width of the track varied according to the sound wave

#### Motion Picture Sound, cont



- A photocell detecting light passing through the track converted the varying light intensity to a sound wave
- Problems
  - Dirt or fingerprints on the track can cause fluctuations and loss of fidelity

#### Systems of Motion Picture Sound – Original

- Cinema Digital Sound (CDS)
  - First used in 1990
  - No backup
  - No longer used
  - Introduced the use of 5.1 channels of sound:
    - Left, Center, Right, Right Surround, Left Surround and Low Frequency Effects (LFE)



#### Systems of Motion Picture Sound – Current

- Dolby Digital
  - 5.1 channels stored between sprocket holes on the film
  - Has an analog backup
  - First used in 1992
- Digital Theater Sound (DTS)
  - 5.1 channels stored on a separate CD
  - Synchronized to the film by time codes
  - Has an analog backup
  - First used in 1993



#### Systems of Motion Picture Sound – Current, cont

- Sony Dynamic Digital Sound (SDDS)
  - Eight full channels
  - Optically stored outside the sprocket holes on both sides of the film
    - Both sides serve as a redundancy
  - Analog optical backup
  - The extra channels are a full channel LFE plus left center and right center behind the screen

