Chapter 30

Sources of the Magnetic Field

PHYS 2321

Week 10: Sources of Magnetic field

Day 1 Outline

1) Hwk: Ch. 28 P. 1,4,5,19,27,29,37,38 Due Wed \rightarrow Fri MiscQ 1-13 (odd)
2) Quiz on Ch. 27 - magnetic fields and forces
3) Applications of crossed E and B fields
4) Sources of magnetic fields (Ch 28)
a. Demo: current makes B-field
b. Biot-Savart law
c. B of a long straight wire
d. Force between parallel currents

Notes:

PHYS 2321

Week 10: Sources of Magnetic field

Day 2 Outline

1) Hwk: Ch. 28 P. 1,4,5,19,27,29,37,38 Due Fri MiscQ 1-13 (odd)
2) Sources of magnetic fields (Ch 28)
a. Demo: current makes B-field \checkmark
b. Biot-Savart law $d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{s} \times \hat{r}}{r^{2}}$
c. B of a long straight wire
d. Force between parallel currents
e. Ampere's law - easier than Biot-Savart!

Notes:

Biot-Savart Law - Introduction

- Biot and Savart conducted experiments on the force exerted by an electric current on a nearby magnet
- They arrived at a mathematical expression that gives the magnetic field at some point in space due to a current

Biot-Savart Law - Set-Up

- The magnetic field is $d \vec{B}$ at some point P.
- The length element is $d \vec{s}$
- The wire is carrying a steady current, I

Biot-Savart Law Observations

- The vector $d \vec{B}$ is perpendicular to both $d \vec{s}$ and to the unit vector \hat{r} directed from $d \vec{s}$ toward P
- The magnitude of $d \vec{B}$ is inversely proportional to r^{2}, where r is the distance from $d ; s$ to P

Biot-Savart Law Observations, cont

- The magnitude of $d \vec{B}$ is proportional to the current and to the magnitude $d s$ of the length element $d \vec{s}$
- The magnitude of $d \vec{B}$ is proportional to $\sin \theta$, where θ is the angle between the vectors $d \vec{s}$ and \hat{r}

Biot-Savart Law - Equation

- The observations are summarized in the mathematical equation called the Biot-Savart law:

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{s} \times \hat{r}}{r^{2}}
$$

- The magnetic field described by the law is the field due to the current-carrying segment $d \vec{s}$.
- It doesn't include the B due to other currents or permanent magnets.

Permeability of Free Space

- The constant μ_{0} is called the permeability of free space
- $\mu_{\mathrm{o}}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}$

Total Magnetic Field

- $d \vec{B}$ is the field created by the current in the length segment ds
- To find the total field, sum up the contributions from all the current elements $I_{d} \vec{s}$

$$
\vec{B}_{\text {tot }}=\frac{\mu_{0} I}{4 \pi} \int_{\text {current }} \frac{d \vec{s} \times \hat{r}}{r^{2}}
$$

- The integral is over the entire current distribution

\vec{B} Compared to \vec{E}

- Distance
- The magnitude of the magnetic field varies as the inverse square of the distance from the source
- The electric field due to a point charge also varies as the inverse square of the distance from the charge

\vec{B} Compared to $\vec{E}, 2$

- Direction
- The electric field created by a point charge is radial in direction
- The magnetic field created by a current element is perpendicular to both the length element $d \vec{s}$ and the unit vector \hat{r}

\vec{B} Compared to $\vec{E}, 3$

- Source
- An electric field is established by an isolated electric charge
- The current element that produces a magnetic field must be part of an extended current distribution
- Therefore you must integrate over the entire current distribution

\vec{B} for a Long, Straight Conductor

- The thin, straight wire is carrying a constant current, I
- $d \vec{s} \times \hat{r}=(d x \sin (90-\theta)) \hat{k}$
- Integrating over all the current elements gives

$$
\begin{gathered}
B=-\frac{\mu_{0} I}{4 \pi a} \int_{\theta_{1}}^{\theta_{2}} \cos \theta d \theta \\
B=\frac{\mu_{0} I}{4 \pi a}\left(\sin \theta_{1}-\sin \theta_{2}\right)
\end{gathered}
$$

(a)

\vec{B} for a Long, Straight Conductor, Special Case

- If the conductor is an infinitely long, straight wire, $\theta_{1}=\pi / 2$ and

$$
\theta_{2}=-\pi / 2
$$

- The field becomes

$$
B=\frac{\mu_{0} I}{2 \pi r}
$$

(b)

B for a Long, Straight Conductor, Direction

- The magnetic field lines are circles concentric with the wire
- The field lines lie in planes perpendicular to to wire
- The right-hand rule for determining the direction of the field is shown

B for a Curved Wire Segment

- Find the field at point O due to the wire segment
- I and R are constants
$\mathrm{B}=\mu_{0} \mathrm{I} \theta / 4 \pi a$
θ will be in radians

B for a Circular Loop of Wire

- Consider the previous result, with a full circle
- $\theta=2 \pi$

$$
B=\frac{\mu_{0} I \theta}{4 \pi a}=\frac{\mu_{0} I 2 \pi}{4 \pi a}=\frac{\mu_{0} I}{2 a}
$$

- This is the field at the center of the loop

B for a Circular Current Loop

- The loop has a radius of R and carries a steady current of I
- Find the field at point P

$$
B_{x}=\frac{\mu_{0} I a^{2}}{2\left(a^{2}+x^{2}\right)^{3 / 2}}
$$

Comparison of Loops

- Consider the field at the center of the current loop
- At this special point, $x=0$
- Then,

$$
B_{x}=\frac{\mu_{0} I a^{2}}{2\left(a^{2}+x^{2}\right)^{3 / 2}}=\frac{\mu_{0} I}{2 a}
$$

This is exactly the same result as from the curved wire

Magnetic Field Lines for a Loop

(a)

(b)

(c)

- Figure (a) shows the magnetic field lines surrounding a current loop
- Figure (b) shows the field lines in the iron filings
- Figure (c) compares the field lines to that of a bar magnet

Magnetic Force Between Two Parallel Conductors

- Two parallel wires each carry a steady current
- The field \vec{B}_{2} due to the current in wire 2 exerts a force on wire 1 of $F_{1}=I_{1} \ell B_{2}$

Magnetic Force Between Two Parallel Conductors, cont.

- Substituting $\vec{B}_{2}=\frac{\mu_{0} I_{2}}{2 \pi a}$ gives $F_{1}=\frac{\mu_{0} I_{1} I_{2} l}{2 \pi a}$
- RHR \#1 shows us F_{1} is down and F_{2} is up.
- Parallel conductors carrying currents in the same direction attract each other
- Parallel conductors carrying current in opposite directions repel each other

Magnetic Force Between Two Parallel Conductors, final

- The result is often expressed as the magnetic force between the two wires, F_{B}
- This can also be given as the force per unit length:

$$
\frac{F_{B}}{l}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi a}
$$

Definition of the Ampere

- The force between two parallel wires can be used to define the ampere
- When the magnitude of the force per unit length between two long, parallel wires that carry identical currents and are separated by 1 m is $2 \times 10^{-7} \mathrm{~N} / \mathrm{m}$, the current in each wire is defined to be 1 A

Definition of the Coulomb

- The SI unit of charge, the coulomb, is defined in terms of the ampere
- When a conductor carries a steady current of 1 A , the quantity of charge that flows through a cross section of the conductor in 1 s is 1 C

Andre-Marie Ampère

- 1775-1836
- French physicist
- Credited with the discovery of electromagnetism
- The relationship between electric current and magnetic fields
- Also worked in mathematics

Magnetic Field of a Wire

- A compass can be used to detect the magnetic field
- When there is no current in the wire, there is no field due to the current
- The compass needles all point toward the Earth's north pole

(a)
- Due to the Earth's magnetic field

Magnetic Field of a Wire, 2

- Here the wire carries a strong current
- The compass needles deflect in a direction tangent to the circle
- This shows the direction of the magnetic field produced by the wire
- Use the active figure to vary the current

Magnetic Field of a Wire, 3

- The circular magnetic field around the wire is shown by the iron filings

Ampere's Law

- The product of $\vec{B} \cdot d \vec{s}$ can be evaluated for small length elements $d \vec{s}$ on the circular path defined by the compass needles for the long straight wire
- Ampere's law states that the line integral of $\vec{B} \cdot d \vec{s}$ around any closed path equals $\mu_{o} l_{\text {enc }}$ where $I_{\text {enc }}$ is the total steady current passing through any surface bounded by the closed path: $\overrightarrow{\boldsymbol{B}} \cdot \boldsymbol{d} \overrightarrow{\boldsymbol{s}}$

Field Due to a Long Straight Wire - From Ampere's Law

- Want to calculate the magnetic field at a distance r from the center of a wire carrying a steady current I
- The current is uniformly distributed through the cross section of the wire

Field Due to a Long Straight Wire - Results From Ampere's Law

- Outside of the wire, $r>R$

$$
\int \vec{B} \cdot d \vec{s}=B(2 \pi r)=\mu_{0} I \quad \int \vec{B} \cdot d \vec{s}=B|2 \pi r|=\mu_{0} I
$$

- Inside the wire, we need l, the current inside the amperian circle

$$
\begin{aligned}
& \int \vec{B} \cdot d \vec{s}=B(2 \pi r)=\mu_{0} I^{\prime} \leftarrow I^{\prime}=\frac{r^{2}}{R^{2}} I \\
& \qquad B=\frac{\mu_{0} I r}{2 \pi R^{2}}
\end{aligned}
$$

Field Due to a Long Straight Wire - Results Summary

- The field is proportional to r inside the wire
- The field varies as $1 / r$ outside the wire
- Both equations are equal at $r=R$

Magnetic Field of a Toroid

- Find the field at a point at distance r from the center of the toroid
- The toroid has N turns of wire
$\oint \vec{B} \cdot d \vec{s}=B(2 \pi r)=\mu_{0} N I$

$$
B=\frac{\mu_{0} N I}{2 \pi r}
$$

Magnetic Field of a Solenoid

- A solenoid is a long wire wound in the form of a helix
- A reasonably uniform magnetic field can be produced in the space surrounded by the turns of the wire

Magnetic Field of a Solenoid, Description

- The field lines in the interior are
- nearly parallel to each other
- uniformly distributed
- close together
- This indicates the field is strong and almost uniform

Magnetic Field of a Tightly Wound Solenoid

- The field distribution is similar to that of a bar magnet
- As the length of the solenoid increases
- the interior field becomes more uniform
- the exterior field becomes weaker

(a)

Ideal Solenoid Characteristics

- An ideal solenoid is approached when:
- the turns are closely spaced
- the length is much greater than the radius of the turns

Ampere's Law Applied to a Solenoid

- Ampere's law can be used to find the interior magnetic field of the solenoid
- Consider a rectangle with side ℓ parallel to the interior field and side w perpendicular to the field
- This is loop 2 in the diagram
- Only the side of length ℓ inside the solenoid contributes to the integral.
- This is side 1 in the diagram

Ampere's Law Applied to a Solenoid, cont.

- Applying Ampere's Law gives

$$
\oint \vec{B} \cdot d \vec{s}=\int_{\text {path } 1} B \cdot d \vec{s}=B \int_{\text {path1 }} d s=B l
$$

- The total current through the rectangular path equals the current through each turn multiplied by the number of turns

$$
B l=\mu_{0} N I \ldots B=\frac{\mu_{0} N I}{l}
$$

Magnetic Field of a Solenoid,

 final- Solving Ampere's law for the magnetic field is

$$
B=\frac{\mu_{0} N I}{l}=\mu_{0} n I
$$

- $n=N / \ell$ is the number of turns per unit length
- This is most accurate at points near the center of a real solenoid

Magnetic Flux

- The magnetic flux associated with a magnetic field is defined in a way similar to electric flux
- Consider an area element $d A$ on an arbitrarily shaped surface

Magnetic Flux, cont.

- The magnetic field in this element is \vec{B}
- $d \vec{A}$ is a vector that is perpendicular to the surface
- $d \vec{A}$ has a magnitude equal to the area $d A$
- The magnetic flux Φ_{B} is

$$
\Phi_{B}=\int \vec{B} \cdot d \vec{A}
$$

- The unit of magnetic flux is $\mathrm{T} \cdot \mathrm{m}^{2}=\mathrm{Wb}$
- Wb is a weber

Magnetic Flux Through a Plane, 1

- A special case is when a plane of area A makes an angle θ with $d \vec{A}$

The magnetic flux is $\Phi_{B}=$ $B A \cos \theta$

- In this case, the field is parallel to the plane and $\Phi_{\mathrm{B}}=0$

Magnetic Flux Through A Plane, 2

- The magnetic flux is $\Phi_{B}=$ $B A \cos \theta$
- In this case, the field is perpendicular to the plane and

$$
\Phi_{\mathrm{B}}=B A
$$

- This will be the maximum value of the flux
- Use the active figure to

(b) investigate different angles

Gauss' Law in Magnetism

- Magnetic fields do not begin or end at any point
- The number of lines entering a surface equals the number of lines leaving the surface
- Gauss' law in magnetism says the magnetic flux through any closed surface is always zero:

$$
\oint \vec{B} \cdot d \vec{A}=0
$$

