
  

Chapter 30

Sources of the Magnetic Field



PHYS 2321 
Week 10: Sources of Magnetic field

Day 1 Outline
1) Hwk:  Ch. 28 P. 1,4,5,19,27,29,37,38  Due Wed → Fri
              MiscQ 1-13 (odd)
2) Quiz on Ch. 27 – magnetic fields and forces
3) Applications of crossed E and B fields
4) Sources of magnetic fields (Ch 28)
   a. Demo: current makes B-field
   b. Biot-Savart law
   c. B of a long straight wire
   d. Force between parallel currents
Notes: 



PHYS 2321 
Week 10: Sources of Magnetic field

Day 2 Outline
1) Hwk:  Ch. 28 P. 1,4,5,19,27,29,37,38  Due Fri
              MiscQ 1-13 (odd)
2) Sources of magnetic fields (Ch 28)
   a. Demo: current makes B-field  
   b. Biot-Savart law
   c. B of a long straight wire
   d. Force between parallel currents
   e. Ampere’s law – easier than Biot-Savart!
Notes: 

d B⃗=
μ0
4 π

Id s⃗×r̂
r2



  

Biot-Savart Law – Introduction

 Biot and Savart conducted experiments on 
the force exerted by an electric current on a 
nearby magnet

 They arrived at a mathematical expression 
that gives the magnetic field at some point in 
space due to a current



  

Biot-Savart Law – Set-Up

 The magnetic field is        at 
some point P.

 The length element is 
 The wire is carrying a steady 

current,  I

d B⃗

d s⃗



  

Biot-Savart Law – 
Observations

 The vector       is perpendicular to both      
and to the unit vector   directed from       
toward P

 The magnitude of       is inversely proportional 
to r2, where r is the distance from      to P

r̂
d B⃗ d s⃗

d s⃗

d s⃗
d B⃗



  

Biot-Savart Law – 
Observations, cont

 The magnitude of      is proportional to the 
current and to the magnitude ds of the length 
element  

 The magnitude of       is proportional to sin θ 
where θ is the angle between the vectors    
and r̂

d B⃗

d B⃗

d s⃗

d s⃗



  

 The observations are summarized in the 
mathematical equation called the Biot-Savart 
law:

 The magnetic field described by the law is the 
field due to the current-carrying segment     . 
 It doesn’t include the B due to other currents or 

permanent magnets. 

Biot-Savart Law – Equation

d B⃗=
μ0
4 π

Id s⃗×r̂
r2

d s⃗



  

Permeability of Free Space

 The constant o is called the permeability of 
free space

 o = 4 x 10-7 T. m / A



  

Total Magnetic Field

       is the field created by the current in the 
length segment ds

 To find the total field, sum up the 
contributions from all the current elements I

 The integral is over the entire current distribution

d s⃗

d B⃗

B⃗tot=
μ0 I

4 π
∫current

d s⃗×r̂
r 2



  

      Compared to    

 Distance 
 The magnitude of the magnetic field varies as the 

inverse square of the distance from the source
 The electric field due to a point charge also varies 

as the inverse square of the distance from the 
charge

B⃗ E⃗



  

    Compared to   , 2

 Direction
 The electric field created by a point charge is 

radial in direction
 The magnetic field created by a current element is 

perpendicular to both the length element       and 
the unit vector r̂

B⃗ E⃗

d s⃗



  

    Compared to   , 3B⃗ E⃗

 Source
 An electric field is established by an isolated 

electric charge
 The current element that produces a magnetic 

field must be part of an extended current 
distribution
 Therefore you must integrate over the entire current 

distribution



  

     for a Long, Straight 
Conductor

 The thin, straight wire is 
carrying a constant 
current, I

         
 Integrating over all the 

current elements gives 

d s⃗× r̂=(dx sin (90−θ ) ) k̂

B=−
μ0 I

4 πa
∫
θ1

θ
2

cos θdθ

B=
μ0 I

4 πa
(sin θ1−sin θ2 )

B⃗



  

   for a Long, Straight 
Conductor, Special Case

 If the conductor is an 
infinitely long, straight 
wire, θ= /2 and 

θ= -/2
 The field becomes 

B=
μ0 I

2 πr

B⃗



  

B for a Long, Straight 
Conductor, Direction
 The magnetic field lines are 

circles concentric with the 
wire

 The field lines lie in planes 
perpendicular to to wire

 The right-hand rule for 
determining the direction of 
the field is shown



  

B for a Curved Wire Segment

 Find the field at point O 
due to the wire 
segment

 I and R are constants

   B = μ0Iθ / 4πa 

   θ will be in radians



  

  B for a Circular Loop of Wire

 Consider the previous result, with a full circle
  = 2

 This is the field at the center of the loop

B=
μ0 Iθ

4 πa
=
μ0 I 2 π

4 πa
=
μ0 I

2a



  

B for a Circular Current Loop

 The loop has a radius 
of R and carries a 
steady current of I

 Find the field at point P

Bx=
μ0 Ia

2

2 (a2+x2 )
3 /2



  

Comparison of Loops

 Consider the field at the center of the current 
loop

 At this special point, x = 0 
 Then, 

 This is exactly the same result as from the curved 
wire

Bx=
μ0 Ia

2

2 (a2+x2 )
3 /2

=
μ0 I

2a



  

Magnetic Field Lines for a 
Loop

 Figure (a) shows the magnetic field lines 
surrounding a current loop

 Figure (b) shows the field lines in the iron filings
 Figure (c) compares the field lines to that of a bar 

magnet



  

Magnetic Force Between Two 
Parallel Conductors

 Two parallel wires each 
carry a steady current

 The field     due to the 
current in wire 2 exerts 
a force on wire 1 of 
F1 = I1ℓ B2

PLAY
ACTIVE FIGURE

B⃗2



  

Magnetic Force Between Two 
Parallel Conductors, cont.

 Substituting                gives

 RHR #1 shows us F1 is down and F2 is up.
 Parallel conductors carrying currents in the same 

direction attract each other
 Parallel conductors carrying current in opposite 

directions repel each other

B⃗2=
μ0 I 2
2 πa

F1=
μ0 I1 I 2l

2 πa



  

Magnetic Force Between Two 
Parallel Conductors, final

 The result is often expressed as the magnetic 
force between the two wires, FB

 This can also be given as the force per unit 
length:

F B
l

=
μ0 I 1 I 2
2 πa



  

Definition of the Ampere

 The force between two parallel wires can be 
used to define the ampere

 When the magnitude of the force per unit 
length between two long, parallel wires that 
carry identical currents and are separated by 
1 m is 2 x 10-7 N/m, the current in each wire is 
defined to be 1 A



  

Definition of the Coulomb

 The SI unit of charge, the coulomb, is defined 
in terms of the ampere

 When a conductor carries a steady current of 
1 A, the quantity of charge that flows through 
a cross section of the conductor in 1 s is 1 C



  

Andre-Marie Ampère

 1775 – 1836
 French physicist
 Credited with the 

discovery of 
electromagnetism
 The relationship between 

electric current and 
magnetic fields

 Also worked in 
mathematics



  

Magnetic Field of a Wire

 A compass can be used 
to detect the magnetic 
field

 When there is no 
current in the wire, 
there is no field due to 
the current

 The compass needles 
all point toward the 
Earth’s north pole 
 Due to the Earth’s 

magnetic field



  

Magnetic Field of a Wire, 2

 Here the wire carries a 
strong current

 The compass needles 
deflect in a direction 
tangent to the circle

 This shows the direction 
of the magnetic field 
produced by the wire

 Use the active figure to 
vary the current

PLAY
ACTIVE FIGURE



  

Magnetic Field of a Wire, 3

 The circular magnetic 
field around the wire is 
shown by the iron 
filings



  

Ampere’s Law

 The product of           can be evaluated for 
small length elements      on the circular path 
defined by the compass needles for the long 
straight wire

 Ampere’s law states that the line integral of

             around any closed path equals oIenc 
where Ienc is the total steady current passing 
through any surface bounded by the closed 
path:

B⃗⋅d s⃗
d s⃗

B⃗⋅d s⃗

B⃗⋅d s⃗



  

Field Due to a Long Straight 
Wire – From Ampere’s Law

 Want to calculate the 
magnetic field at a 
distance r from the 
center of a wire 
carrying a steady 
current I

 The current is uniformly 
distributed through the 
cross section of the 
wire



  

Field Due to a Long Straight Wire 
– Results From Ampere’s Law

 Outside of the wire, r > R

 Inside the wire, we need I’, the current inside 
the amperian circle

∫ B⃗⋅d s⃗ =B (2πr )=μ0 I ∫ B⃗⋅d s⃗ =B (2πr )=μ0 I

∫ B⃗⋅d s⃗ =B (2πr )=μ0 I'← I'=
r 2

R2
I

B=
μ0 Ir

2 πR2



  

Field Due to a Long Straight Wire 
– Results Summary

 The field is proportional 
to r inside the wire

 The field varies as 1/r 
outside the wire

 Both equations are 
equal at r = R



  

Magnetic Field of a Toroid

 Find the field at a point 
at distance r from the 
center of the toroid

 The toroid has N turns 
of wire

∮ B⃗⋅d s⃗ =B (2πr )=μ0 NI

B=
μ0NI

2 πr



  

Magnetic Field of a Solenoid

 A solenoid is a long 
wire wound in the form 
of a helix

 A reasonably uniform 
magnetic field can be 
produced in the space 
surrounded by the turns 
of the wire



  

Magnetic Field of a Solenoid, 
Description

 The field lines in the interior are 
 nearly parallel to each other
 uniformly distributed
 close together

 This indicates the field is strong and almost 
uniform



  

Magnetic Field of a Tightly 
Wound Solenoid

 The field distribution is 
similar to that of a bar 
magnet

 As the length of the 
solenoid increases
 the interior field becomes 

more uniform
 the exterior field 

becomes weaker



  

Ideal Solenoid – 
Characteristics 

 An ideal solenoid is 
approached when:
 the turns are closely 

spaced 
 the length is much 

greater than the radius of 
the turns



  

Ampere’s Law Applied to a 
Solenoid

 Ampere’s law can be used to find the interior 
magnetic field of the solenoid

 Consider a rectangle with side ℓ parallel to 
the interior field and side w perpendicular to 
the field
 This is loop 2 in the diagram

 Only the side of length ℓ inside the solenoid 
contributes to the integral.
 This is side 1 in the diagram



  

Ampere’s Law Applied to a 
Solenoid, cont.

 Applying Ampere’s Law gives 

 The total current through the rectangular path 
equals the current through each turn 
multiplied by the number of turns

∮ B⃗⋅d s⃗= ∫
path1

B⋅d s⃗ =B ∫
path1

ds =Bl

Bl=μ0NI…B=
μ0NI

l



  

Magnetic Field of a Solenoid, 
final

 Solving Ampere’s law for the magnetic field is 

 n = N / ℓ is the number of turns per unit length
 This is most accurate at points near the 

center of a real solenoid

B=
μ0NI

l
=μ0 nI



  

Magnetic Flux

 The magnetic flux 
associated with a 
magnetic field is 
defined in a way similar 
to electric flux

 Consider an area 
element dA on an 
arbitrarily shaped 
surface



  

Magnetic Flux, cont.

 The magnetic field in this element is 
        is a vector that is perpendicular to the surface
        has a magnitude equal to the area dA
 The magnetic flux B is 

 The unit of magnetic flux is T.m2 = Wb
 Wb is a weber

B⃗
d A⃗
d A⃗

ΦB=∫ B⃗⋅d A⃗



  

Magnetic Flux Through a 
Plane, 1

 A special case is when 
a plane of area A 
makes an angle θ with

The magnetic flux is B = 
BA cos θ
 In this case, the field is 

parallel to the plane 
and  = 0

PLAY
ACTIVE FIGURE

d A⃗



  

Magnetic Flux Through A 
Plane, 2

 The magnetic flux is B = 
BA cos 

 In this case, the field is 
perpendicular to the plane 
and 

 = BA
 This will be the maximum 

value of the flux
 Use the active figure to 

investigate different angles
PLAY

ACTIVE FIGURE



  

Gauss’ Law in Magnetism

 Magnetic fields do not begin or end at any 
point
 The number of lines entering a surface equals the 

number of lines leaving the surface
 Gauss’ law in magnetism says the 

magnetic flux through any closed surface is 
always zero:

∮ B⃗⋅d A⃗=0
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