Physics 2311. Thermodynamics material


Equations for Final Exam.

Constants, such as $R=8.314 J/mol\cdot K$ and $k_B=1.38\times 10^{-23}$ J/K, will be provided as needed.


19-2
One possible temperature conversion equation:

\begin{displaymath}T_F = \frac{9}{5}T_C + 32^{\circ}F \end{displaymath}

19-4
Linear thermal expansion:

\begin{displaymath}\Delta L = \alpha L_i \Delta T \end{displaymath}

19-6
Volume thermal expansion:

\begin{displaymath}\Delta V = 3\alpha V_i \Delta T \end{displaymath}

19-8
Equation of State for an ideal gas:

\begin{displaymath}PV = nRT \end{displaymath}

Variation: $P_i V_i = P_f V_f$ (Constant Temp. Called Boyle's Law).
20.4
Heat added to a liquid or solid:

\begin{displaymath}Q = mc\Delta T \end{displaymath}

20.-
Heat capacity

\begin{displaymath}C = mc\end{displaymath}

20-6
Latent heat of fusion or vaporization:

\begin{displaymath}Q = \pm m L_{f~or~v} \end{displaymath}

20-8
Work done on a gas.

\begin{displaymath}W = -\int_{V_i}^{V_f} PdV \end{displaymath}

20.9
First Law of Thermodynamics.

\begin{displaymath}\Delta E_{int} = Q + W \end{displaymath}

20.-
First Law applied to special gas processes.
20.14
Power of thermal conduction: (SKIP)

\begin{displaymath}{\cal P} = kA \vert\frac{dT}{dx} \vert \end{displaymath}

20.16
Power of thermal conduction, multi-slab problems: (SKIP)

\begin{displaymath}{\cal P} = A\frac{(T_h-T_c)}{\Sigma_i(L_i/k_i)} \end{displaymath}

20.18
Power of radiative emission: (SKIP)

\begin{displaymath}{\cal P} = \sigma A e T^4 \end{displaymath}

21.2
Pressure in terms of mean molecular kinetic energy:

\begin{displaymath}P = \frac{2}{3} \left( \frac{N}{V} \right)(\frac{1}{2}m\overline{v^2}) \end{displaymath}

21.4
Mean translational KE related to temperature:

\begin{displaymath}\frac{1}{2}m\overline{v^2} = \frac{3}{2} k_B T \end{displaymath}

21.7
Root Mean square speed:

\begin{displaymath}v_{rms}= \sqrt{ \overline{v^2} } \end{displaymath}

21.8
Molar specific heat of ideal gas
21.10
Total internal energy of ideal monatomic gas:

\begin{displaymath}E_{int} = \frac{3}{2}nRT \end{displaymath}

21.12
Change in internal energy of ideal gas, any process:

\begin{displaymath}\Delta E_{int} = nC_V \Delta T \end{displaymath}

21.16
Relation between $C_P$ and $C_V$:

\begin{displaymath}C_{P}-C_V = R\end{displaymath}

21.18
Adiabatic process for ideal gas:

\begin{displaymath}PV^{\gamma}=~constant\end{displaymath}

22.8
Entropy for some reversible process:

\begin{displaymath}dS = \frac{dQ_r}{T} ~~~~~OR~~~~~ \Delta S = \int\frac{dQ_r}{T}\end{displaymath}

22.13
Entropy for adiabatic free expansion (or isothermal expansion) :

\begin{displaymath}\Delta S = nR\ln \frac{V_f}{V_i}\end{displaymath}



Jason Pinkney 2011-03-25