Physics 2311 – Physics I Dr. J. Pinkney

Outline for Day 1 Attendance and a list of units Discuss syllabus Units & Measurements

Jan 22, noon

Homework (do by Mon) Ch. 1 Read sections 3-5,7 (skim 1 & 2) Ch. 1 MisConcQs: 2-8,10; Probs:1-8,14,15,17,18, 23,24,54-56

Notes: Attend lab this week – bring \$15 for supplies. Tutoring on Thursdays 7-9 SA116.

Student's list of units

***MKS** \rightarrow base unit from the MKS system of units. Circled \rightarrow derived units Uncircled \rightarrow base unit (or base unit plus a prefix).

Jose XMKS Seconds (Kilowatts) *MKKilogram (Watt= inches Kilometers pounds Ser nards grams Celsius Coulumbs Ampsed allon picoinch N·M Sec Newtons = kgm feet (Farad) Joules (Hertz = 15' Kilovolts) tg 52.m miles liters yochtoseconds nanoseconds Fahrenheit Pascal centimeters $= 1 \frac{k_{2}m_{2}}{s_{3}}$ XMIS meters Millimeters *Mbskelvin (Watts) milliseconds minutes (decibe) Ohms hours (Volts) Counces milligrams decimeters (CUPS) pints tonnes amps

Making convenient units Name a unit! with prefixes

TABLE 1.2 Multiples and Prefixes for Metric Units*					
Multiple [†]	Prefix (and Abbreviation)	Pronunciation	<i>Multiple</i> [†]	Prefix (and Abbreviation)	Pronunciation
1024	yotta- (Y)	yot'ta (a as in about)	10-1	deci- (d)	des'i (as in <i>deci</i> mal)
1021	zetta- (Z)	zet'ta (a as in about)	10-2	centi- (c)	sen'ti (as in <i>senti</i> mental)
1018	exa- (E)	ex'a (a as in about)	10-3	milli- (m)	mil'li (as in <i>mili</i> tary)
1015	peta- (P)	pet'a (as in <i>peta</i> l)	10-6	micro- (µ)	mi'kro (as in <i>micro</i> phone)
1012	tera- (T)	ter'a (as in terrace)	10-9	nano- (n)	nan'oh (<i>an</i> as in <i>ann</i> ual)
- 10 ⁹	giga- (G)	ji'ga (<i>ji</i> as in <i>ji</i> ggle, <i>a</i> as in <i>a</i> bout)	10-12	pico- (p)	pe'ko (peek-oh)
106	mega- (M)	meg'a (as in <i>mega</i> phone)	10-15	femto- (f)	fem'toe (<i>fem</i> as in <i>fem</i> inine)
103	kilo- (k)	kil'o (as in <i>kilo</i> watt)	10-18	atto- (a)	at'toe (as in an <i>ato</i> my)
102	hecto- (h)	hek'to (heck-toe)	10-21	zepto- (z)	zep'toe (as in <i>zep</i> pelin)
10	deka- (da)	dek'a (<i>deck</i> plus <i>a</i> as in <i>a</i> bout)	10-24	yocto- (y)	yock' toe (as in sock)

*For example, 1 gram (g) multiplied by 1000 (10³) is 1 kilogram (kg); 1 gram multiplied by 1/1000 (10⁻³) is 1 milligram (mg). *The most commonly used prefixes are printed in color. Note that the abbreviations for the multiples 10⁶ and greater are capitalized, whereas the abbreviations for the smaller multiples are lowercased.

Goals of Week 1:

- Learn about base and derived units
- Learn dimensions and dimensional analysis
- > Understand the need for errors and significant figures
- Learn how to propagate errors in +, -, ×, and ÷

 $^{\flat}$ Understand how $\sigma,$ and $\sigma_{_{\mu}}$ are related to measurements and errors (skip)

Units

Base Units

luminous intensity cd (candela)

Mechanical:

Quantity	MKS unit	cgs unit
mass	kg (kilogram)	g
length	m (meter)	cm
time	s (second)	S
Other:		
Quantity	MKS unit	
temperature	K (Kelvin)	
current	A (amps)	
amount of matter	mol (mole)	

Derived Units

knots (1.15 mph) mph (miles/hour) km/s Liter (volume, dm³) Newton (kg m/s²) microsecond(base quantity) m³/s (flow rate) etc. Using prefixes to make more "convenient" units

"Convenient" units allow the number to be between about 0.1 and 10.

Ex) What unit would be equivalent to 1x10⁻⁶ seconds? Ans: 1 microsecond (1 µs)

What unit is equivalent to 1x10³ Newtons?

What unit is equivalent to 10⁶ phon?

What unit is equivalent to 10⁻³ pedes?

What unit is equivalent to 10¹² dactyls?

What unit is equivalent to 10⁻¹² boos?

How could you express $2x10^3$ mockingbirds using a prefix?

Etc.

Making convenient units with prefixes

TABLE 1.2 Multiples and Prefixes for Metric Units*						
<i>Multiple</i> ⁺	Prefix (and Abbreviation)	Pronunciation	<i>Multiple</i> [†]	Prefix (and Abbreviation)	Pronunciation	
1024	yotta- (Y)	yot'ta (a as in about)	10-1	deci- (d)	des'i (as in <i>deci</i> mal)	
1021	zetta- (Z)	zet'ta (a as in about)	10-2	centi- (c)	sen'ti (as in <i>senti</i> mental)	
1018	exa- (E)	ex'a (a as in about)	10-3	milli- (m)	mil'li (as in <i>mili</i> tary)	
1015	peta- (P)	pet'a (as in <i>peta</i> l)	10-6	micro- (µ)	mi'kro (as in microphone)	•
1012	tera- (T)	ter'a (as in terrace)	10-9	nano- (n)	nan'oh (<i>an</i> as in <i>ann</i> ual)	
- 10 ⁹	giga- (G)	ji'ga (<i>ji</i> as in <i>ji</i> ggle, a as in about)	10-12	pico- (p)	pe'ko (peek-oh)	
106	mega- (M)	meg'a (as in <i>mega</i> phone)	10-15	femto- (f)	fem'toe (<i>fem</i> as in <i>fem</i> inine)	
103	kilo- (k)	kil'o (as in <i>kilo</i> watt)	10-18	atto- (a)	at'toe (as in an <i>ato</i> my)	
102	hecto- (h)	hek' to (heck-toe)	10-21	zepto- (z)	zep'toe (as in <i>zep</i> pelin)	
10	deka- (da)	dek'a (<i>deck</i> plus <i>a</i> as in <i>a</i> bout)	10-24	yocto- (y)	yock' toe (as in sock)	

*For example, 1 gram (g) multiplied by 1000 (10³) is 1 kilogram (kg); 1 gram multiplied by 1/1000 (10⁻³) is 1 milligram (mg). ⁺The most commonly used prefixes are printed in color. Note that the abbreviations for the multiples 10⁶ and greater are capitalized, whereas the abbreviations for the smaller multiples are lowercased.

Physics 2311 – Physics I Dr. J. Pinkney

Outline for Day 2 Unit systems Unit Standards Dimensional analysis

Homework (Due by end of Mon) Ch. 1 Read sections 3-5,7 (skim 1,2) Ch. 1 MisConcQs: 2-8,10; Probs:1-8,14,15,17,18, 23,24,54-56 Preview the rest of the powerpoint slides.

Notes: Tutoring on Thursdays 7-9 Heterick Library. Try Practice Quiz on "Units ..."

Unit systems

SystemLMTmks (or SI)mkgscgscmgsUS Customeryft (foot) slugs

Note: "US Customery" system is sometimes called "fps" for "foot, pound, second", but this reinforces a misconception about the pound: the pound is not a unit of mass!!!

Unit systems - Weights and Masses

2.2 lbs/kg is an **improper conversion** because lbs is a unit of weight and kg is a unit of mass!!! (It's only true on Earth's surface.)

 \underline{Weight} = force of gravity on an object (depends on which planet you're on).

W = m * g where g = acceleration due to gravity

<u>Mass</u> = a measure of how much matter is in an object

Weight units include pounds (lbs) and Newtons (N).

Ex) What is the weight of 1 kg? In Newtons: $W = m g = (1 \text{ kg})*(9.8 \text{ m/s}^2)$ In Pounds: W = m gNeed m in slugs and g in ft/s^2... 1 kg = 0.0689 slug $g = 32 \text{ ft/s}^2$ $W = .0689 \text{ slug} * 32 \text{ ft/s}^2 = 2.21 \text{ lbs}$ Ex) How many kg in a slug? 1 kg/.0689 slug = 14.5 kg/slug

Unit Standards

Standard: how we define a unit.

- Used to be real-life objects
- Now units are based on physical constants (c, h)

Why do we need standards?

Communication!

- * between scientists discussing experimental results
- * between international businessmen selling goods "by the gallon" or "by the pound"
- * between Earth and alien life (some day?)

Unit Standards Length

The meter is now based on the speed of light in a vacuum.

Unit Standards Time

1 second = the time for 9,192,631,770 oscillations of Ce133 atom.

Unit Standards Mass

Since Nov. 2019, the kg is based on the meter, the second, and defining Planck's constant as exactly $h=6.62607015 \times 10^{-34}$ kg m² s⁻¹!

Dimensions

"The <u>dimension</u> of a physical quantity expresses its dependence on the base quantities as a product of symbols (or powers of symbols) representing those base quantities." <u>dimension</u>: the physical nature of a quantity expressed in terms of L, M, and T.⁺

For mechanical base units ...

Quantity	Dimension
mass	Μ
length	L
time	Т

For some derived units ...

[miles/hour] =	L/T
[km/s] =	L/T
[knot] =	L/T
[L (liter)] =	L ³
[kg m/s ²] =	ML/T ²
[density]=	M/L ³

My use of brackets: "[x]=" means "the dimensions of x are ..." [†]The dimensions of the Amp, Kelvin, Mole and Cd are I,Θ,N,J .

Dimensional Analysis

a way to figure out if an equation is (dimensionally) correct
allows you to decide which equation to use

Ex. 1) Is this equation dimensionally correct? $ma = \frac{1}{2^{+}}mv^{2}$ where m=mass, v=speed (L/T), a=acceleration (L/T²)

Soln: $[ma]=ML/T^2$ and $[\frac{1}{2} mv^2]=ML^2/T^2$ since $ML/T^2 \neq ML^2/T^2$ the equation <u>cannot be correct</u>.

Ex. 2) Is this equation dimensionally correct? $y = at^2$ where y=position (L), t=time, a=acceleration=L/T² Soln: [y]=L, [at²]=L/T² * T²=L. since L = L, the equation is dimensionally correct. However, the equation is still wrong! How? [†]1/2 is a dimensionless constant

Dimensional Analysis (cont)

Ex. 3) How long does it take to drive 20 miles (to Lima) at a constant 60 mph? Soln: Let v=speed (L/T), d=distance (L) and t=time (T). Possible (linear) equations: $t=v^*d$, t=v/d, t=d/vCheck dimensions: L^2/T 1/T T so: t=d/v = 20/60 = 1/3 hr or 20 minutes.

In-class quiz #1

Instructions:

- 1) take out clean sheet of paper. Write in your notebook.
- 2) Write "In-class #1" on top left, and your name on top right.
- 3) Write answers to the following questions in 2 minutes.
- 4) Turn in at end of class for attendance.

You may use your notes to find answers.

- 1) Power is an energy per time, usually measured in Watts. Is the Watt a base or a derived unit?
- 2) What are the dimensions of m^xa^Y if m= mass, a=acceleration, X=3, and Y=-2?
- 3) What are the dimensions of density? (A unit is kg m⁻³.)
- 4) What was the original standard for the second?
- 5) From which units is the pound derived?

In-class quiz #1 - answers

- Power is an energy per time, usually measured in Watts. Is the Watt a base or a derived unit?
 Derived
- 2) What are the dimensions of m^xa^Y if m= mass, a=acceleration, X=3, and Y=-2?

```
M<sup>3</sup> L<sup>-2</sup> T<sup>4</sup>
```

3) What are the dimensions of density?

M L-3

4) What was the original standard for the second?

1/86400 th of the mean solar day (rot of E rel to Sun)

5) From which units is the pound derived?

 $1 \text{ pound} = 1 \text{ slug ft} / \text{s}^2$

measurement: the act or result of measuring

Example: use a plastic ruler to measure a shoe's length to be L=12.0±0.1 inches.

Example: use a Vernier scale to measure the same shoe length to be L=12.13±0.04 inches.

Notice:

•A measurement consists of a *number*, an *error* (or uncertainty, or tolerance), and a *unit*. 3 things!

- •The number of significant digits shown is related to the error in the measurement. (more sig figs for smaller fractional errors.)
- •The number of significant digits shown is indicative of the *precision* of the measurement.

• The Vernier caliper is more *precise* than the ruler.

•We did not yet determine which measurement is more *accurate*.

Accuracy and precision

i. <u>accuracy:</u> how close the measurement is to some accepted, "true" value

ii. <u>precision</u>: how close repeated measurements (using the same device and procedure) are to each other

Measurements -accuracy and precision

Example: two bathroom scales. Step on and off them repeatedly in a consistent way. digital scale analog (yellow) scale 155.1 lbs 150. lbs 155.0 148 155.1 149 155.2 149 155.3 151

- Q: Which scale has the greater "spread" in values?
- Q: Which scale is more precise?
- Q: Which scale is most accurate?

You go to the doctor's office and they tell you 149.2 lbs.

- Q: Which scale is most accurate?
- Q: Which scale is more precise?

Significant figures or (significant digits)

-- a way of suggesting precision.

significant figure: any digit of a number that is known with some certainty. The <u>least significant digit</u> (LSD) is the rightmost signifigant digit and it is the least certain.

Count the number of "sig figs" in these numbers:

Examples:

1)4,567,00042)4.567053)4,567,00064)4,567,00075)0.034504

6) 30.003 5

Notes:

1. Zeros on the right side of a number are not significant unless indicated by a bar or a decimal point. (Ex. 3 and 4)

2. It is easiest to show that a zero is significant using scientific notation: 4.56700×10^6 has 6 s.f..

3. A zero left of a decimal point is not sig-

nificant for numbers less than 1. (Ex. 5).

Which number is the LSD for each of the above? Which place is occupied by the LSD in the above?

Errors types of errors

random errors, instrumental errors, tolerance - related to the <u>precision</u> of the measurement

systematic errors, discrepancies

- related to the <u>accuracy</u> of the measurement
- an effect that shifts all measurements in the same direction.
 Ex) You use the previous yellow scale to weigh yourself.
 It reads 5 lbs before you stand on it! Your wt will be 5 lbs too high. (Need to adjust the zeropoint dial!)

Mistake.

not error.

- Ex) Measuring temperatures with an alcohol thermometer, you need to submerge thermometer a specified depth.Ex) You are measuring a length with a ruler.
 - * parallax * worn down ends * non-perpendicularity * cheep rulers have bad tickmarks * lengths change w/T

Error (uncertainty, tolerance)
-- a number to quantify precision (random errors) or accuracy (systematic errors).

How do you determine the *random* error on a measurement?

- a) From the number of significant figures? Not good. There is NO universally accepted rule for deriving errors from significant digits. Ex.) 32.4 could mean 32.4±0.05, or 32.4±0.1 (Ch. 1), or 32.4±0.5.
- b) By looking at the smallest "tickmarks" on your instrument. "<u>Instrumental error</u>" is ¹/₂ of the smallest tickmark spacing.
- c) By considering how difficult it is to use the instrument. Ex. using a stopwatch.
- d) By repeating the measurement many times and finding the spread of measurements. (standard deviation, σ) BEST!

Ways to express errors that reflect precision:

<u>absolute errors</u> 155 +- 8 lbs has an absolute error of 8 lbs <u>fractional errors</u> 155 +- 8 lbs has a fractional error of 0.052 <u>percentage errors</u>

155 +- 8 lbs has a percentage error of 5.2%

Ways to express **errors** that quantify <u>accuracy</u>:

Discrepancy: difference between measured and true value. – Ex) true weight = 150 lbs, discrepancy = 155-150 = 5 lbs. <u>absolute discrepancy</u> (5 lbs) <u>fractional discrepancy</u> (5/150) = 0.033 <u>percentage discrepancy</u> (5/150)*100% = 3.3%

Error Propagation

How do you figure out the error for a number that was calculated from measurements?

I. If only significant figures are shown:

- a) Addition and subtraction: the final answer should have its LSD in the same place as the least precise input measurement Ex) 5800 m + 121 m = 5900 m
 - Ex) 612800 s + 2011.5 s = 614,800 s
 - Ex) 220. 115 = 105
- b) Multiplication and division: the final answer should have the same number of sig figs as the input number with the fewest sig. figs.
 - $Ex) 2000 \times 15.143 = 30,000$
 - Ex) $382,500 \times 11$. = 4,200,000 (not 4,207,500)
 - Ex) 520 / 3 = 200 (not 173.3)

Error Propagation - cont.

II. If errors are explicitly shown

a) Addition and subtraction:

1) simple way: add error

```
Ex) 580.\pm 2 \text{ m} + 121 \pm 3 \text{ m} = 701.\pm 5
```

(This is an overestimate.)

2) correct way: add errors "in quadrature"

Ex) $580.\pm 2 m + 121\pm 3m = 701.\pm e$

where $e=\sqrt{(2)^2+(3)^2}=\sqrt{13}=3.61$ (but round up, so e=4 m) b) Multiplication and division:

1) simple way: "adding the fractional errors"

Ex) Area of a rectangular plate. L=21.3 \pm 0.2, W=9.8 \pm 0.1 cm.

2) correct way: add fractional errors in quadrature.

(Most Physics I texts use method 1 instead.)

Note: the LSD of the answer must match the LSD of the error! Note: the number of sig figs in the final answer does not have to be the same as the least precise input number, like in prev slide.

Errors and statistics

Mean
$$\mu = \frac{\sum x}{N}$$

Standard Deviation

→ Gives error in a <u>single</u> measurement

Standard Deviation of the mean:

$$\sigma_{\mu} = \frac{\sigma}{\sqrt{N}}$$

 $\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{(N_i - 1)}}$

→ Gives error in the mean of all N measurements. Your final error.

Normal or Gaussian distribution

Errors and statistics

IMPORTANT CONCEPT: A distribution of measurements can be interpreted as a Gaussian probability distribution.

Ex) You measure a mean of 10000 weights to be 70.0 lbs with a standard deviation of $\sigma = 10.0$ lbs. If the weights are normally distributed, what is the probability that a single, new measurement will have a value greater than 90 lbs?

90-70 = 20 lbs 20 lbs = $2*10 = 2*\sigma$ Area under curve between $z=2*\sigma$ and $z=+\infty$ is (100%-95.45%)/2 =2.275%=Ans. Ex) What is probability that a single

new measurement will be 50 or lower?

Ans=2.275% Ex) What is the probability that a single new measurement will be between 60 and 80 lbs? Ans=68.27%.