Physics 2311. Mechanics of Solids

Ch. 9-11 Exam-like questions Use to practice for exam. Name:

- 1. A bullet feels an average force of 280 N for 0.02 seconds as it travels down the barrell of a gun. What is the change in momentum of the bullet?
 - (a) 0 (b) 5.6 kg m s⁻¹ (c) 11.2 kg m s⁻¹ (d) 96 kg m s⁻¹ (e) 14000 kg m s⁻¹
- 2. Two bodies, A and B, have equal momenta. The mass of A is nine times that of B. The ratio of the kinetic energy of B to that of A (K_B/K_A) is:
 - (a) 1/9 (b) 1/3 (c) 1/1 (d) 3/1 (e) 9/1
- 3. A "closed system" consists of a 2 kg ball moving at 12 m/s, and a 4 kg ball at rest.

I. What is the total *kinetic energy* after an elastic, head-on collision between the balls?

(a) 0 J (b) 24 J (c) 48 J (d) 96 J (e) 144 J

II. What is the total *kinetic energy* after a perfectly inelastic, head-on collision?

(a) 0 J (b) 24 J (c) 48 J (d) 96 J (e) 144 J

III. What is the total *momentum*, in kg m s⁻¹, after either type of collision between the balls?

- (a) 0 (b) 6 (c) 12 (d) 24 (e) 72
- 4. At 0.1 kg ball is flying directly towards a wall in outer space with v=20 m/s. After 0.02 seconds of contact, the ball rebounds straight away from the wall with the speed v=15 m/s. What was the average force exerted on the ball by the wall (magnitude only) during the time of contact?
 - (a) 0.5 N (b) 3.5 (c) 35 N (d) 175 N (e) 880 N
- 5. Find the center of mass (X_{CM}, Y_{CM}) of this system of three discrete masses: 1 kg at (-10,-10), 1 kg at (0,0), and 5 kg at (20,20).
 - (a) (-5,-5) (b) (-10.3,20.2) (c) (90,90) (d) (12.9,12.9) (e) (3.3,3.3)

- 6. A rod has a mass per length given by $\lambda = 0.20 + 0.50x$ kg/m and a length of 0.5 m. What is the total mass of the rod if it extends from the origin to x=0.5m?
 - (a) 0.16 kg (b) 0.21 kg (c) 0.31 kg (d) 0.50 kg (e) 0.70 kg
- 7. A rod has a mass per length given by $\lambda = 0.20 + 0.50x \text{ kg/m}$ and a length of 0.5 m. What is the center of mass of the rod if it extends from the origin to x=0.5m?
 - (a) 0.015 m (b) 0.111 m (c) 0.237 m (d) 0.283 m (e) 0.331 m
- 8. (1pt) Using symbols like ω , α , θ (with appropriate subscripts), write the equation which is the rotational equivalent to $v_f^2 v_i^2 = 2a(x_f x_i)$.

(a)
$$\omega_f = \omega_i + \alpha t$$

(b) $x = \frac{1}{2}at^2 + v_0t + x_0$
(c) $\theta = \frac{1}{2}\alpha t^2 + \omega_0 t + \theta_0$
(d) $\omega_f^2 - \omega_i^2 = 2\alpha(\theta_f - \theta_i)$
(e) $\omega_f^2 - \omega_i^2 = 2a(\theta_f - \theta_i)$

- 9. A wheel initially has an angular velocity of 18 rad/s but it is *slowing* at a rate of 4.0 rad/s². By the time it stops it will have turned through _____. (Note: not radians!)
 - (a) 3.2 rev (b) 6.4 rev (c) 16 rev (d) 36 rev (e) 45 rev
- 10. A barbell has a small, 2 kg weight on each end of a 2-m long massless bar. What is the rotational inertia relative to a spin axis running perpendicular to the bar and through the center of the bar?
 - (a) $2 \text{ kg } m^2$ (b) $3 \text{ kg } m^2$ (c) $4 \text{ kg } m^2$ (d) $8.0 \text{ kg } m^2$ (e) $9 \text{ kg } m^2$
- 11. A flywheel (hoop shaped) with radius of 0.2 m starts from rest and spins up with a constant angular acceleration of 3.0 rad/s². What is the tangential acceleration of the flywheel at r=0.2 m?
 - (a) 0.3 m s⁻² (b) 0.49 m s⁻² (c) 0.55 m s⁻² (d) 0.60 m s⁻² (e) 3.0 m s⁻²

- 12. A flywheel (hoop shaped) with radius of 0.2 m starts from rest and spins up with a constant angular acceleration of 3.0 rad/s². What is the centripetal acceleration at r=0.2 m after 6 seconds?
 - (a) 0.6 m s⁻²
 - (b) 9.2 m s^{-2}
 - (c) 38.1 m s^{-2}
 - (d) 60.0 m s^{-2}
 - (e) 64.8 m s⁻²
- 13. The rotational inertia of a solid uniform sphere about a diameter is $(2/5)MR^2$, where M is its mass and R is its radius. If the sphere is pivoted about an axis that is tangent to its surface, its rotational inertia is:
 - (a) MR^2 (b) $(2/5)MR^2$ (c) $(3/5)MR^2$ (d) $(5/2)MR^2$ (e) $(7/5)MR^2$
- 14. What is the total kinetic energy of a 0.2 kg baseball with I = 0.002 kg m², thrown at 10 m/s with a spin of 60 rad/s?
 - (a) 1.5 J (b) 13.6 J (c) 22.0 J (d) 23.5 J (e) 32.5 J
- 15. A cylinder is 0.10 m in radius and its rotational inertia about the axis of symmetry, is 0.020 kg m^2 . A string is wound around the cylinder and pulled with a force of 1.0 N. The angular acceleration of the cylinder is:
 - (a) 2.5 rad/s^2 (b) 5.0 rad/s^2 (c) 10 rad/s^2 (d) 15 rad/s^2 (e) 20 rad/s^2
- 16. A 1.5 kg particle moves with a velocity of 6 m/s \hat{j} at the instant when its position vector is 3.0 m $\hat{i} + 2.0$ m \hat{j} . What are the magnitude and direction of the angular momentum about the origin (0,0,0)?
 - (a) 27 $\hat{k} kgm^2 s^{-1}$
 - (b) $3\hat{i} + 2\hat{j} kgm^2 s^{-1}$
 - (c) 45 $\hat{k} kgm^2s^{-1}$
 - (d) 9 \hat{i} + 27 \hat{j} kgm²s⁻¹
 - (e) 9 \hat{j} + 33 \hat{k} kgm²s⁻¹

- 17. (1pt) A solid cylinder, hoop, and two solid spheres roll (without slipping) down an incline starting from rest at the same height. Sphere 1 has the same mass and radius as the cylinder and hoop. Sphere 2 has twice the mass and the same radius of sphere 1. What is the order in which they reach the bottom, first to last?
 - (a) sphere 2, sphere 1, cylinder, hoop
 - (b) hoop, cylinder, sphere 2 and sphere 1 tie
 - (c) cylinder, sphere 1, sphere 2, hoop
 - (d) sphere 1 and sphere 2 tie, cylinder, hoop
 - (e) sphere 1, cylinder, hoop, sphere 2
- 18. (1pt) An ice skater spinning at 5 rad/s has a rotational inertia of 4.0 kg m² with her arms out. After pulling her arms in, her rotational inertia is 1.5 kg m² and her angular speed becomes _____
 - (a) 5.0 rad/s (b) 9.0 rad/s (c) 13.3 rad/s (d) 16. rad/s (e) 18.3 rad/s
- 19. (2pts) A solid disk with $I_1 = 6 \text{ kg m}^2$ and $\omega_1 = 4 \text{ rad s}^{-1}$, is spinning about its axis of symmetry, which is oriented vertically. A second solid disk, oriented in the same way, has $I_2 = 12 \text{ kg m}^2$ and $\omega_2 = 0$ and it falls straight down on disk 1. What final spin, ω_f , do the two disks have after friction brings their *relative* motion to a stop.
 - (a) 1.33 rad s^{-1} (b) 1.5 rad s^{-1} (c) 2.7 rad s^{-1} (d) 24 rad s^{-1} (e) 32 rad s^{-1}