Physics 231. Mechanics of Solids

Exam-like questions - Ch. 3. Vectors and 2D motion

- 1. What is the length of the vector $-6.0\hat{i} + 12\hat{j}$ m?
 - (a) 6.0 m (b) 9.0 m (c) 12 m (d) 13 m (e) 18 m
- 2. What is the direction (in degrees CCW of the x-axis) of the vector $-6.0\hat{i} + 12\hat{j}$?
 - (a) 117° (b) -60° (c) 60° (d) 136° (e) 45°
- 3. If the equation of motion of a "thingy" is $\vec{r}(t) = at^3\hat{i} + bt^2\hat{j} + ct\hat{k}$, then write an expression for: $\vec{v}(t) =$ _____.
 - (a) $3at^{3}\hat{i} + 2bt^{2}\hat{j} + ct\hat{k}$
 - (b) $2at^2\hat{i} + bt\hat{j} + c\hat{k}$
 - (c) $3at\hat{i} + 2b\hat{j} + 0\hat{k}$
 - (d) $3at^2\hat{i} + bt\hat{j} + c\hat{k}$
 - (e) $3at^2\hat{i} + 2bt\hat{j} + c\hat{k}$
- 4. If the equation of motion of a "thingy" is $\vec{r}(t) = at^3\hat{i} + bt^2\hat{j} + ct\hat{k}$, then write an expression for: $\vec{a}(t) =$ _____
 - (a) $9at^2\hat{i} + 4bt\hat{j} + c\hat{k}$
 - (b) $6at\hat{i} + 2b\hat{j} + 0\hat{k}$
 - (c) $4at\hat{i} + b\hat{j} + 0\hat{k}$
 - (d) $3a\hat{i} + 0\hat{j} + 0\hat{k}$
 - (e) $6at\hat{i} + b\hat{j} + c\hat{k}$
- 5. A car moves so that its position (in meters) is $\vec{r}(t) = 3t\hat{i} + t^3\hat{j}$. What is its position at t=3? $\vec{r}(3sec) =$ _____

(a) $2\hat{i} + 8\hat{j}$ (b) $9\hat{i} + 27\hat{j}$ (c) $9\hat{i} + 9\hat{j}$ (d) $3\hat{i} + 12\hat{j}$ (e) $6\hat{i} + 27\hat{j}$

- 6. A car moves so that its position (in meters) is $\vec{r}(t) = 3t\hat{i} + t^3\hat{j}$. When does the car reach y=8? t = _____
 - (a) 2.0 sec (b) 2.23 sec (c) 2.83 sec (d) 3.0 sec (e) 3.2 s
- 7. A car moves so that its position (in meters) is $\vec{r}(t) = 3t\hat{i} + t^3\hat{j}$. What is the magnitude of the acceleration at t=3sec? a=_____
 - (a) 1.0 m/s² (b) 4.33 m/s² (c) 6.0 m/s² (d) 12 m/s² (e) 18 m/s²

- 8. A car moves so that its position (in meters) is $\vec{r}(t) = 3t\hat{i} + t^3\hat{j}$. Does the car ever reach x=-2 for t > 0s? (y or n)
 - (a) yes (b) no
- 9. A projectile is fired with initial speed v_i at an altitude of 30 degrees such that it's range is 200 meters. At which other angle can that projectile be fired at v_i to acheive the same range?
 - (a) 15° (b) 40° (c) 50° (d) 60° (e) 75°
- 10. Two seconds after being shot from ground level, a projectile is displaced 40 m horizontally and 60 m vertically above its point of projection. What are the horizontal and vertical components of the initial velocity of the projectile, respectively?
 - (a) 14 and 8 m/s (b) 20 and 30 m/s (c) 30 and 40 m/s (d) 20 and 40 m/s (e) 30 and 50 m/s