Physics 2311. Pinkney.
Name:
Exam I Practice Questions.

1. A cell phone is dropped off of a $60-\mathrm{m}$ high building We know that $\mathrm{a}=\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward.
(a) $(1 \mathrm{pt})$ Solve for the time it takes to hit the ground.
(b) (1pt) How fast is it going just before the phone shatters?
2. (2pts) If the equation of motion of a "thingy" is $\vec{r}(t)=a t^{3} \hat{i}+b t \hat{j}+c t^{2} \hat{k}$, then write an expression for:
(a) $(1 \mathrm{pt}) \vec{v}(t)=$ \qquad
(b) (1pt) $\vec{a}(t)=$ \qquad
3. (2 pts) Three seconds after being shot from ground level, a projectile is displaced 90 m horizontally and 50 m vertically above its starting point. What are the horizontal and vertical components of the initial velocity $\left(\overrightarrow{v_{0}}\right)$ of the projectile?
4. (2 pts) Three strings exert forces on a frictionless dry ice block simultaneously. String 1 pulls the block towards $\theta=300 \mathrm{deg}$. String 2 pulls it towards $\theta=210 \mathrm{deg}$. String 3 pulls it towards $\theta=120 \mathrm{deg}$. Each string pulls with a force of 1 N . What is the net magnitude and direction of the force on the block? (Hint: draw the picture first!)
5. (1pt) An elevator with a mass of 1052 kg is supported by a steel cable. What is the tension in the cable when the elevator is being accelerated upward at a rate of $3.0 \mathrm{~m} / \mathrm{s}^{2} ?\left(\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
6. (2pt) A biker bikes around a circular track of radius 40 m at a constant speed. If she completes a lap in 15 seconds, what is her centripetal acceleration?
7. (1pt) An automobile moves on a level horizontal road in a circle of radius 25 m . The coefficient of friction between tires and road is 0.55 . The maximum speed with which this car can round this curve (without slipping) is:
