
Chapter 7

Energy of a System



Outline for Week 7,D1
  Exam I return
  Work by a constant force
  Scalar dot products, A•B = C
  

Homework
Ch. 7 Read 7.1-7.4 
         P. 1,2,5,8,12,18,20,22,25,37,39,41,45,55,
              56,59,60,65
         MiscQ: 1-13 (odd)                                  Do for next Mon
Notes:  
     “NEW STUFF”: added chapter7.pdf, two practice
quizzes, and Ch 7 hwk key.

W=FΔr cosθ



Outline for Week 7,D2
  What is energy?
  Work by a constant force
  Scalar dot products, A•B = C
  Work by a variable force 
  

Homework
Ch. 7 Read 7.1-7.4 
         P. 1,2,5,8,12,18,20,22,25,37,39,41,45,55,
              56,59,60,65
         MiscQ: 1-13 (odd)         Do for next Mon (after break)
Notes:  
     “NEW STUFF”: updated chapter7.pdf.
      Midterms will be based on Exam 1.

W=∫ F⃗⋅d r⃗

W=FΔr cosθ



What is Energy?

Some problems are very difficult to solve with Newton’s Laws alone, but the Law 
of Conservation of Energy makes them easier. 

Energy: in physics, a quantity measured in Joules (SI), ergs, calories, BTU, N-m, 
ft-lbs, or kW-hrs.  It’s dimensions are ML2/T2.  It is a scalar, NOT a vector.

Energy: “the ability to do work”      (Energy is not easily defined!)

Types of energy:  

Energies stored in a system: thermal (or internal), kinetic (energy of motion), 
potential (energy of position: gravitational, elastic, nuclear, chemical)

Energies transferred into a system: work (W) and heat (Q).  (Others: T
ET

 T
MT

 T
ER

)

It is wrong to say “the system contains a lot of work”.  Instead you can say “work
was done on the system”.  You can say “the system contains a lot of kinetic and
potential energy” or “work increased the kinetic energy of the system”.

Introduction



Work
The work, W, done on a system by a constant force is given by:

                                              W = F r cos  

where F is the magnitude of the force, r is the magnitude of the displacement of 
the point of application of the force, and is the angle between the force and the 
displacement vectors.

 The meaning of the term work is distinctly different in physics than in 
everyday meaning.

 Work is not a vector, even though it involves two vectors, F and r.

 Work can be + or – because cos θ can be + or -.

 Two geometric interpretations:

• F cos θ is the component of F parallel to r,  (i.e., W=F
║
r)

• r cos θ is the component of r parallel to F.  (i.e., W=Fr
║
)

Section 7.2



Work, cont.

W = F r cos 

 The displacement, ∆r, is that of the 
point of application of the force.

 A force does no work on the object 
if the force does not move through 
a displacement.

 The work done by a force on a 
moving object is zero when the 
force applied is perpendicular to 
the displacement of its point of 
application.

Section 7.2



Work, cont.

W = F r cos 

Q1: What work is done by F =10 N if
θ=0 degrees and r=2 m?

Q2: What work is done by F=10 N if
θ=60 degrees and r=2 m?

Q3: What work is done by F=10 N if
θ=90 degrees and r=2 m?

Q4: The box weighs 20 N. What is the
work done by the normal force on the
box when θ=0 degrees and r=2 m?

Q5: The box weighs 20 N. What is the work done by the force of gravity on the
box when θ=0 degrees and r=2 m?

Q6: What is the work done by the force of friction on the 20N box if μ
k
 = 0.5 and 

when θ=0 degrees and r=2 m?

Section 7.2



Work, cont.

W = F r cos 

Q7: What work is done by F =20 N î
if r=2 m î?

Q8: What work is done by F=-20 N î if
r=2 m i?  How could this happen?

Q9: What work is done by F=20 î + 15 ĵ N 
if r=3 m î?

Q10: What work is done by F=20 î + 0 ĵ N 
if r=3 m î – 2m  ĵ ?

Section 7.2



Work, cont.

Section 7.2

What is the work done by the
tension force in 1 revolution of the mass?

What is the work by the tension force
in ½ revolution of the mass?

What is the work done by the centripetal
force for any angle swept out by the string?

What is the work done by the net force on
the mass for any angle swept out by the string?



Displacement in the Work Equation

The displacement is that of the point of application of the force.

If the force is applied to a rigid object that can be modeled as a particle, the 
displacement is the same as that of the particle.

For a deformable system, the displacement of the object generally is not the 
same as the displacement associated with the forces applied.

Work by friction is also hard to explain because there is no single point of
application.  But it can ultimately be modeled by 
and is usually negative because θ=180.

Section 7.2

W = f
k
 r cos 



Outline for Week 7,D3
  Scalar dot products, A•B = C
  Work by a variable force 
  

Homework
Ch. 7 Read 7.1-7.4 
         P. 1,2,5,8,12,18,20,22,25,37,39,41,45,55,
              56,59,60,65
         MiscQ: 1-13 (odd)         Do for next Mon (after break)
Notes:  
     “NEW STUFF”: added exam-like questions for Ch.7, 
updated chapter7.pdf.
      Midterms will be based on Exam 1.

W=∫ F⃗⋅d r⃗



Work (cont.)

The normal force and the gravitational 
force do no work on the object.

 cos  = cos 90° = 0

The force     is the only force that does 
work on the object.

Example with acceleration.

Q: How much work is done pushing a 
46 kg crate to the right with a=2.5 m/s2î 
over 10.3 m across a floor with μ

k
=0.4?

Sol: First find F
app

, then W=F
app

∆r 
F

net
=ma = F

app
 + f

k

… W = 3042 J.

F
⃗

Section 7.2



Work Is An Energy Transfer

If the work done on a system is positive, energy is transferred 
into the system.

If the work done on the system is negative, energy is transferred 
out of the system.

Example system: a mass on a string (a pendulum).

Energy that can be stored: gravitational potential energy and 
kinetic energy

Q: How can you use work to transfer energy in?

Q: How can you use work to transfer energy out?

Section 7.2



Scalar (Dot) Product of Two Vectors

The scalar product of two vectors is  
written as          .

 It is also called the dot product.

 

 is the angle between A and B

Applied to work, this means

(for the case of constant forces)

Section 7.3

A⃗⋅B⃗

A⃗⋅B⃗ =AB cosθ

W=FΔr cosθ =  { F⃗⋅Δ r⃗ ¿



Scalar Product, cont

The scalar product is commutative.

  

The scalar product obeys the distributive law of multiplication.

  

Section 7.3

A⃗⋅B⃗=B⃗⋅A⃗

A⃗⋅( B⃗+C⃗ )= A⃗⋅B⃗ + A⃗⋅C⃗



Dot Products of Unit Vectors

 

Using component form with vectors:

In the special case where 

 

Section 7.3

î⋅î= ĵ⋅ ĵ= k̂⋅k̂=1
î⋅ĵ= î⋅k̂= ĵ⋅k̂=0

A⃗⋅B⃗ =AxBx+AyBy+AzBz

A⃗ =A x î +A y ĵ+A z k̂

B⃗=B x î +B y ĵ +Bz k̂

A⃗ =A x î +A y ĵ+A z k̂



Dot Products - example

  

 

Section 7.3

A⃗⋅B⃗ =AxBx+AyBy+AzBz

A⃗⋅B⃗ =AB cosθ

Ex) (P. 20)  Find the angle between A=5.8i-3.5j-6.2k
                                              and     B=8.2i+4.3j-7.0k

A⃗⋅B⃗=5 .8⋅8 . 2+(−3 .5 )⋅4 .3+(−6 . 2 )⋅(−7 . 0 )

  A·B  = 75.91
Find |A| = 9.145     and |B|=11.61
Then |A||B| cos θ = 75.91
                   cos θ = 75.91/(9.145*11.61)  →  θ = 44.4 °  (fixed)



Work Done by a Varying Force

To use W = F Δ r cos θ, the force must 
be constant, so the equation cannot be 
used to calculate the work done by a 
varying force.

Assume that during a very small 
displacement, x, F is constant.

For that displacement,   W ~ F x 

For all of the intervals,

 
f

i

x

x
x

W F x

Section 7.4

W=∫ F⃗⋅d r⃗



Work Done by a Varying Force, cont.

Let the size of the small displacements 
approach zero .
Since

Or, more generally, 

The work done is equal to the area 
under the curve between xi and xf.

 
  ∫

lim
0

f
f

i
i

x
x

x x xx
x

F x F dx

Section 7.4

W=∫ F⃗⋅d r⃗



Work Done by a Varying Force, cont.

Section 7.4

W=∫ F⃗⋅d r⃗

Example)  P. 7.41.  Find the work done on a particle moving according to this
graph …

a) between x=0 to x=10 m
Ans: 2800 J

b) between x=0 to x=15 m 
Ans: 2100 J



Work Done by a Varying Force, cont.

Section 7.4

W=∫ F⃗⋅d r⃗

Example)  P. 7.45.

With A = 3.00 Nm1/2   what is the work done by this force when the
object moves from x

i
=0 to x

f
=1.0?  

F ( x )=
A

√ x



Work Done By Multiple Forces

If more than one force acts on a system and the system can be modeled as a 
particle, the total work done on the system is the work done by the net force.

In the general case of a net force whose magnitude and direction may vary.

The subscript “ext” indicates the work is done by an external agent on the 
system.

 
f

i

x

ext xx
W W F dx  ∫

 f

i

x

ext x
W W d  ∫ F r

⃗ ⃗

Section 7.4



Work Done by Multiple Forces, cont.

If the system cannot be modeled as a particle, then the total work is equal to the 
algebraic sum of the work done by the individual forces.

 Remember work is a scalar, so this is the sum of a bunch of scalars.

 
forces

W W dext    F r
⃗ ⃗

Section 7.4



Outline for Week 8,D1
  Work by the spring force
  The work-KE principle  W

ext
 = ∆K 

  

Homework
Ch. 7 Read 7.1-7.4 
         P. 1,2,5,8,12,18,20,22,25,37,39,41,45,55,
              56,59,60,65 MiscQ: 1-13 (odd)         Do for today
Ch. 8 Read 8.1-8.6,8.8-8.9   Do P. 1, 3, 4, 6, 9,12,13,17,19,28,     
              29,30,55,56,58,61,73 for next Monday
Notes:  Lab on “Cons. Of Energy”  
     “NEW STUFF”:  updating chapter7.pdf.
      Midterms are based on Exam 1.

W=−
1
2

k (x f
2
−x i

2)



Last time:  Work Done by a Varying Force

Can’t use 

But you can add up a bunch of
F·∆r terms to approximate the work.  
Or, do an integral for the exact right 
amount:

Or, more generally, 

The work done is equal to the area 
under the curve between xi and xf.

 
  ∫

lim
0

f
f

i
i

x
x

x x xx
x

F x F dx

Section 7.4

W=∫ F⃗⋅d r⃗

W=FΔr cosθ =  { F⃗⋅Δ r⃗ ¿



The Spring Force   is a variable force!

Section 7.4

In order to calculate the work done by the spring force, we need to know 
how the force varies with position, which is given by ...

Hooke’s Law:

              F
s
 = -kx

F
s
 is the spring force, 

k is the spring constant (N/m), and 
x is the distance of [the block] from the equilibrium position.

The “-” indicates that the force is in the opposition direction of the 
displacement from equilibrium.

The block is usually on a horizontal, frictionless surface.



Work Done By A Spring

Observe the motion of the block with 
various values of the spring constant.

               See 7.9.swf

Section 7.4



Hooke’s Law, cont.

The vector form of Hooke’s Law is 

When x is positive (spring is stretched), 
F is negative

When x is 0 (at the equilibrium 
position), F is 0

When x is negative (spring is 
compressed), F is positive

s xF kxˆ ˆ F i i
⃗

Section 7.4



Work Done by a Spring

Identify the block as the system.

Ex) Calculate the work by the spring as 
the block moves from xi = - xmax to xf = 0.

Notice that this is the area of the shaded 
triangle!

Section 7.4

W s=∫ F⃗s⋅d r⃗=∫
xi

x
f

(−kx { î¿ )⋅(dx { î ¿ )

W s= ∫
− xmax

0

−kxdx=
1
2

(−k ) (02−(− xmax )
2
)=

1
2

kxmax
2

Q: What is the work done by the spring if the block moves from 0 to xmax?

Q: What is the work done by the spring if the block moves from  -xmax to xmax ?

Q: What is the work done by the spring if the block moves from 

X
i
=-0.5 to x

f
=0.3 m if k=300 N/m?



Work Done by a Spring, cont.

Assume the block undergoes an arbitrary displacement from x = xi to x = xf.

The work done by the spring on the block is

 Or 

 If the motion ends where it begins, W = 0

    ∫
2 21 1

2 2
f

i

x

s i fx
W kx dx kx kx

Section 7.4

W s=−
1
2

k ( x f
2
−x i

2
)



Spring with an Applied Force

Suppose an external agent, Fapp, like 
someone’s hand, stretches the spring.

The applied force is equal and opposite 
to the spring force (if block’s speed 
constant).

Work done by Fapp as the block moves 
from –xmax  to x = 0  is equal to 

-½ kx2
max

For any displacement, the work done 
by the applied force (at const speed) is

   ∫
2 21 1

2 2
f

i

x

app f ix
W kx dx kx kx

 app app sF kx kxˆ ˆ ˆ    F i F i i
⃗ ⃗

Section 7.4



Spring with an Applied Force

For any displacement, the work done 
by the applied force is

   ∫
2 21 1

2 2
f

i

x

app f ix
W kx dx kx kx

Section 7.4

Q: What is the work done by a hand pushing 
the block at constant speed from
x

i
=0 to x

f
=0.5 m if k=300 N/m?

     Ans:  ½(300)(0.5)2 = 37.5 J
Q: What is the net work done by a hand 
pushing the spring-block at constant speed 
from x

i
=-0.5 m to x

f
=0.5 m if k=300 N/m?

    Ans:  ½(300)(0.52-0.52) = 0 J

at const. speed



Spring with an Applied Force

For any displacement, the work done 
by the applied force is

   ∫
2 21 1

2 2
f

i

x

app f ix
W kx dx kx kx

Section 7.4

Q: What is the work done by a hand pushing 
the block at constant speed from
x

i
=0 to x

f
=0.5 m if k=300 N/m?

     Ans:  ½(300)(0.5)2 = 37.5 J
Q: What is the net work done by a hand 
pushing the spring-block at constant speed 
from x

i
=-0.5 m to x

f
=0.5 m if k=300 N/m?

    Ans:  ½(300)(0.52-0.52) = 0 J

at const. speed



Outline for Week 8,D2
  Finish work-KE principle  W

ext
 = ∆K 

  Conservative and non-conservative forces
  Potential energy (gravity, elastic, general)
  

Homework
Ch. 8 Read 8.1-8.6,8.8-8.9   Do P. 1, 3, 4, 6, 9,12,13,17,19,28,     
              29,30,55,56,58,61,73 for next Monday

Notes:  
      Lab on “Cons. Of Energy”  
     “NEW STUFF”:  Added Practice Quiz on Ch. 8.
          Updated chapter7.pdf again.
     



Kinetic Energy

One possible result of work acting as an influence on a system is that the system 
changes its speed.

The system could gain or lose kinetic energy.

Kinetic Energy is the energy of an object due to its motion.

 K = ½ mv2

 K is the kinetic energy
 m is the mass of the particle
 v is the speed of the particle

A change in kinetic energy is one possible result of doing work to transfer energy 
into (or out of) a system.

Section 7.5



Work - Kinetic Energy principle

Derivation:
f f

i i

f

i

x x

ext x x

v

ext v

ext f i

ext f i

W F dx ma dx

W mv dv

W mv mv

W K K K

2 21 1

2 2

 



 

  

∫ ∫

∫

Section 7.5

Ex) Find speed of a frictionless block (m=0.5 kg) at x=0 if it is attached to a spring 
with k=300 N/m and released from rest at x=0.3 m.
           Ans: W

ext
=W

s
=-½k(0-0.32)=½ m (v

f
2-0) … v

f
 = 7.35 m/s

Ex) (P. 60) An 85 g arrow is fired from a bow whose string exerts an average 
force of 105 N over a distance of 75 cm.  What is the speed of the arrow as it 
leaves the bow?
          Ans: W

ext
=1/2 m (v

f
2-0) with W

ext
=F

avg
∆x=105(.75m).   v

f
 = 43 m/s



Work-Kinetic Energy Theorem
The Work-Kinetic Energy Theorem states Wext = Kf – Ki = ΔK

When work is done on a system and the only change in the system is in its 
speed, the net work done on the system equals the change in kinetic energy 
of the system.

 The speed of the system increases if the work done on it is positive.

 The speed of the system decreases if the net work is negative.

 Also valid for changes in rotational speed

The work-kinetic energy theorem is not valid if other changes (besides its speed) 
occur in the system or if there are other interactions with the environment 
besides work.

Ex) You exert a 20 N upward force on an object that weighs 10 N.  The force is
applied over a distance of 0.3 m and the object starts at rest.  What is the
change in KE of the object?   Ans: the work is also changing the gravitational
potential energy of the object, so W

hand
  ≠ ∆KE.  Instead, W

hand
=∆KE+∆PE,

or W
hand+grav

= ∆KE.  Using the latter: 20N(0.3)-10N(0.3)=∆KE=3J.
Section 7.5



Work-Kinetic Energy Theorem – Example

Find the final velocity of the block.

The normal and gravitational forces do 
no work since they are perpendicular to 
the direction of the displacement.

Wext = K = ½ mvf
2 – 0

F∆x = ½mvf
2  →  v

f
 = (2F∆x/m)½

The answer for v
f
 could be checked using 

the kinematic equations …

Substitute a = F
net

/m into

v
f
2-v

i
2=2a(∆x), again giving v

f
 = (2F∆x/m)½

Section 7.5

What if friction, f
k
, acted in the opposite direction of the applied force?

Ans: you modify the Work-KE Theorem to be

W
ext

 = ∆K + f
k
∆x.   This gives v

f
 = (2[F-f

k
]∆x/m)½



Conservative Forces

The work done by a conservative force on a particle moving between any two 
points is independent of the path taken by the particle.

The work done by a conservative force on a particle moving through any closed 
path is zero.

 A closed path is one in which the beginning and ending points are the same.

Examples of conservative forces:

 Gravity  (DEMO: 7.15.swf)

 Spring force

Examples of non-conservative forces:

     Friction

     Air resistance

     An applied force which counters friction.



Non-conservative Forces, cont.

The work done against friction is 
greater along the brown path than 
along the blue path.

Because the work done depends on the 
path, friction is a non-conservative 
force.

Section 7.7



Outline for Week 8,D3
  Conservative and non-conservative forces (cont.)
  Potential energy (gravity, elastic, general)
  

Homework
Ch. 8 Read 8.1-8.6,8.8-8.9   Do P. 1, 3, 4, 6, 9,12,13,17,19,28,     
              29,30,55,56,58,61,73 for next Monday

Notes:  
      Lab on “Cons. Of Energy”  
     “NEW STUFF”:  Added Practice Quiz on Ch. 8.
          Updated chapter7.pdf again.
     



Conservative Forces (cont.)

Ex) Show that the work done by gravity on mass m moved from (0,0) to (3,2)
       is the same for 2 straight-line paths.

    Path A: (0,0) to (3,0) to (3,2)

    Path B: (0,0) to (3,2)

W A= ∫
(0,0)

(3,0)

F⃗ g⋅d r⃗ + ∫
(3,0)

(3,2)

F⃗g⋅d r⃗

W A= ∫
(0,0)

(3,0)

−mg ĵ⋅dx î + ∫
(3,0)

(3,2)

−mg ĵ⋅dy ĵ W A=0−2 mg

W B= ∫
(0,0)

(3,2)

F⃗g⋅d r⃗ =F⃗g⋅ r⃗

W B=−2 mg
W B=mg(− ĵ)⋅(3 î+2 ĵ)



Non-conservative Forces

A non-conservative force does not satisfy the conditions of conservative forces.

Non-conservative forces acting in a system cause a change in the mechanical 
energy of the system.

Emech  = K + U 

 K includes the kinetic energy of all moving members of the system.

 U includes all types of potential energy in the system.

Section 7.7

Conservation of mechanical energy:

∆Emech  = ∆K + ∆U  = 0  for a closed system with no non-conservative forces

∆Emech  = ∆K + ∆U  <  0  for a closed system with non-conservative forces

∆Emech  = -f
k
d                for a closed system with non-conservative forces



Conservative Forces, cont

We can associate a potential energy for a system with any conservative force 
acting between members of the system.

 This can be done only for conservative forces.

 In general:  Wint = - U

 Wint  is used as a reminder that the work is done by one member of the system on 
another member and is internal to the system.

 Work done on a component of a system by a conservative force internal to 
an isolated system causes a decrease in the potential energy of the system.

Section 7.7

Example: make energy equations for a falling apple when the system is the 
Earth+apple, and when the system is just the apple.



Conservative Forces and Potential Energy

Define a potential energy function, U, such that the work done by a conservative 
force equals the decrease in the potential energy of the system.

The work done by such a force, F, is

•U is negative when F and x are in the same direction (e.g., a falling rock)

f

i

x

xx
W F dx Uint   ∫

Section 7.8

Ex) Find the potential energy function for a spring.

                                                                    Ans: U
S
 = ½kx2

Ex) Find the potential energy function for gravity.

                                                                     Ans: U
g
 = mgy



Conservative Forces and Potential Energy

The conservative force can be found from the potential energy function through

The x component of a conservative force acting on an object within a system 
equals the negative of the potential energy of the system with respect to x.

 Can be extended to three dimensions:

Ex) (P.8) Find the force associated with U(x,y,z)=3x2+2xy+4y2z.

Ans: use the above derivatives to find

       F
x
 = -(6x+2y),  F

y
=-(2x+8y),   F

z
=-4y2

   Then the force is 

x

dU
F

dx


Section 7.8

F y=−
∂ U
∂ y

F z=−
∂U
∂ z

F⃗ (x , y , z )=(−6 x−2 y ) î +(8 y−2 x) ĵ−4 y2 k̂



Conservative Forces and Potential Energy – Check 

Ex) Find the force of a stretched spring from its potential energy, U
s
:

 This is Hooke’s Law and confirms the equation for U
s
 = ½kx2

U is an important function because the conservative force can be derived from it.

21

2
s

s

dU d
F kx kx

dx dx
 

   
 



Gravitational Potential Energy

The system is the Earth and the book.

F
app 

is external, F
g
 is internal.

Suppose F
app

 does positive work on the 

book, lifting it at constant speed through 
a vertical displacement.

Then   W
ext

 = F
app

 ·∆r = mg∆r

The positive work done on the system 
by the hand appears as an increase in 
the grav potential energy of the system.

        ∆U
g
 = W

ext

Negative work by the hand results in a 
decrease in the system’s energy.

 f iy y ˆ  r j
⃗

Section 7.6



Gravitational Potential Energy, cont

Assume the book in fig. 7.15 is allowed to fall at a constant speed.

There is no change in kinetic energy since the book starts and ends at the 
same speed.

Gravitational potential energy is the energy associated with an object at a 
given location above the surface of the Earth.

 

 

ext

ext f i

ext f i

W

W mg y y

W mgy mgy

app

ˆ ˆ( )

 

   
 

 

F r

j j

⃗ ⃗

Section 7.6

Conservation of mechanical energy with gravity but no friction is:

   ∆E
m
 = ∆K + ∆U

g
 = 0    where ∆U

g
=W

ext 
is work by F

app

Ex) (P. 13)



Gravitational Potential Energy, final

The quantity mgy is identified as the gravitational potential energy, Ug.

 Ug = mgy 

U
g
 is a scalar in units of Joules (J).

Ug = mgy only applies close to the Earth’s surface.
       y increases away from the Earth, and y=0 at a convenient reference point,
       like the Earth’s surface.

Work may change the gravitational potential energy of the system.

Wext = Ug   and  Wint = -Ug

Potential energy is always associated with a system of two or more interacting 
objects.

NOTE: we’re skipping section 8.7, which gives the expression for gravitational
potential energy far from the surface of the Earth:  U(r)=-GM

E
m/r

Section 7.6



Outline for Week 9,D1
  Example problems in conservation of energy
  Stable and unstable equilibrium in U(x) vs x plots.
  Power
  

Homework
Ch. 8 Read 8.1-8.6,8.8-8.9   Do P. 1, 3, 4, 6, 9,12,13,17,19,28,     
              29,30,55,56,58,61,73 for today
Ch. 9 P. 1,2,4-6,8,9,18,21,23,28,29,37,38,47,54,55
          MisConQ. 1-13 (odd)   for next Monday

Notes:  
      Lab: “Cons. Of Linear Momentum”  p = mv 
      Will make exam-like questions for Ch. 8.
     



Elastic Potential Energy       [Redundant]

Elastic Potential Energy is associated with a spring.

The force the spring exerts (on a block, for example) is Fs = - kx

The work done by an external applied force on a spring-block system is

 W = ½ kxf
2 – ½ kxi

2

 The work is equal to the difference between the initial and final values of an 
expression related to the configuration of the system.

 That expression is the elastic potential energy, U
s
 = ½ kx2

Section 7.6



Elastic Potential Energy, cont.

This expression is the elastic potential 
energy:

     Us = ½ kx2

The elastic potential energy can be 
thought of as the energy stored in the 
deformed spring, or rubber band.

The stored potential energy can be 
converted into kinetic energy.

∆E
m
 = ∆K + ∆U

s 
= 0  (if no friction), so

          ∆K = -∆U
s 

Observe the effects of different 
amounts of compression of the spring 
in   7.20.swf

Section 7.6

[Redundant]



Elastic Potential Energy, final

The elastic potential energy stored in a spring is zero whenever the spring is not 
deformed (U = 0 when x = 0).

 The energy is stored in the spring only when the spring is stretched or 
compressed.

The elastic potential energy is a maximum when the spring has reached its 
maximum extension or compression.

The elastic potential energy is always positive.

 x2 will always be positive.

Section 7.6

[Redundant]



Example problems in conservation of energy.

∆Emech  = ∆K + ∆U  = 0  for a closed system with no non-conservative forces

Useful for frictionless incline, roller coaster and ski ramp problems.

Ex)  (P. 13)  A sled is initially given a shove up a frictionless 18.0° incline. 
It reaches a maximum vertical height 1.22 m higher than where it started at the
bottom.  What was its initial speed?

Ex) (P. 19) A vertical spring (ignore its mass), whose spring constant is 875 N/m,
is attached to a table and is compressed down by 0.220 m.  (a) What [maximum] 
upward speed can It give to a 0.380 kg ball when released?  (b) How high above 
its original position (spring compressed) will the ball fly?



Conservative Forces, final  (advanced)

You now know that the spring force, Fs=-kx, and the force of gravity, F
g
=mg, are

conservative forces, and their corresponding potential energies are:

U
s
 = ½ kx^2    and U

g
=mgy.

Is there a way to tell if a general force, F(x,y,z) is conservative?  Ans: yes!

If  F(x,y,z)= F
x
(x,y,z)î + F

y
(x,y,z)ĵ + F

z
(x,y,z)k, it is conservative if:

Ex) F
s
=-kxi + 0j + 0 k  has all partial derivatives = 0, so it is conservative.

Ex) F
g
= 0i -mg j +0 k  has all partial derivatives = 0, so it is conservative.

Ex) F(x,y) = yi + xj has                                , so it is conservative.

Ex) F(x,y) = xyi + xj  has                                 , so it is NOT conservative.
Section 7.6

∂ Fx

∂ y
=

∂ F y

∂ x
 and 

∂ F z

∂ x
=

∂ F z

∂ y
=0 ; or 

∂ Fx

∂ z
=

∂ F z

∂ x
 and 

∂ F y

∂ x
=

∂ F y

∂ z
=0

∂ F x

∂ y
=

∂ F y

∂ x
=1

∂ F x

∂ y
=x  and 

∂ F y

∂ x
=1



Internal Energy and friction

The energy associated with an object’s 
temperature is called its internal 
energy, Eint.

Let the book and the surfaces be the 
system.  Then, the friction does work 
and increases the internal energy of the 
surfaces.  ∆E

m
 + ∆E

int
 = 0  or ∆E

m
 = -f

k
d

When the book stops, all of its kinetic 
energy has been transformed to 
internal energy.

The total energy remains the same.

See 7.18.swf

If a hand pushes it, W
ext

 ≠ 0 and

∆E
m
 + ∆E

int
 = W

ext
  or   ∆E

m
 = W

ext
 -f

k
d

Section 7.7



Including friction in energy problems

A good general equation for including 
both friction and other external forces 
is:

∆E
m
 = W

ext
 -f

k
d    where ∆E

m
 = ∆K + ∆U

Section 7.7

P. 28) A 16 kg child descends a slide 2.20 m high and starting from rest, reaches
the bottom with a speed of 1.15 m/s.  How much thermal energy due to friction was 
generated in this process?

  Soln:  ∆K + ∆U
g
 = -f

k
d    (f

k
d is the “thermal energy due to friction”)  

                                                 → f
k
d = 334 J

P. 29) Ski starts from rest and slides down 28° incline 85 m long.  a) if μ
k
=0.09, 

what is the ski’s speed at base of the incline?
  Soln:  ∆K + ∆U

g
 = -f

k
d    Find v

f
 buried in ∆K

     vi=0, mg∆y= mg85sin28=mg(40m), d=85 m, f
k
=0.09mgcos28



Stable and unstable equilibrium

Motion in a system can be observed in terms of a graph of its position and 
energy.

In a spring-mass system example, the block oscillates between the turning 
points, x = ±xmax.

The block will always accelerate back toward x = 0.

Section 7.9



Stable and unstable Equilibrium

Equilibrium positions occur where the 
slope of the graph is 0.  That’s where 
the force is 0 because F

x
=-dU/dx.

The x = 0 position is one of stable 
equilibrium.

 Any movement away from this 
position results in a force directed 
back toward x = 0.

Configurations of stable equilibrium 
correspond to those for which U(x) is a 
local minimum.

x = xmax and x = -xmax are called the 
turning points.

Section 7.9



Energy Diagrams and Unstable Equilibrium

For this energy diagram, Fx = 0 at x = 0, 
so the particle is in equilibrium.

However, a slight displacement to the 
left or right leads to the particle moving 
away from x=0. 

This is an example of unstable 
equilibrium.

Configurations of unstable equilibrium 
correspond to those for which U(x) is a 
local maximum.

Section 7.9



Neutral Equilibrium

Neutral equilibrium occurs in a configuration when U is constant over some 
region.

A small displacement from a position in this region will produce neither restoring 
nor disrupting forces.

An example would be an energy diagram with an extended, flat region (where the 
slope is 0, but it is neither a maximum nor a minimum).

Section 7.9

Ex) (P. 73) Graph 8-43



Potential Energy in Molecules

There is potential energy associated 
with the force between two neutral 
atoms in a molecule which can be 
modeled by the Lennard-Jones 
function.

Find the minimum of the function (take 
the derivative and set it equal to 0) to 
find the separation for stable 
equilibrium.

The graph of the Lennard-Jones 
function shows the most likely 
separation between the atoms in the 
molecule (at minimum energy).

12 6
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7.9 Hooke's Law and Restoring Forces



7.15 Work Done By External Agent on System of the Book



7.16 Conservation Mechanical Energy in Block-Spring System



7.18 Work When Kinetic Friction is Present



7.20 An Oscillating Block-Spring System



7.20b Conservation of Mechanical Energy for a Pendulum


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 57
	Slide 58
	Slide 59
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

