
  

Chapter 10

Rotation of a Rigid Object

about a Fixed Axis



Introduction

Outline for W10,D3 
     Finish center of mass (Ch. 9) 
     Rotation of a rigid solid (Ch. 10)
         θ, ω, and α
     Relation between linear (s,v,a) and angular quantities
     Torque
       

Homework
Ch. 10 P. 1,4-6,19-21,25,28-30,34,35,37,53,54,55,64,67,69
             Do for Wed/Fri

Notes:  
     Lab this week is “2D Collisions”
     See “NEW STUFF” for Ch. 10. 

   



Center of Mass, Rod

Ex) Find the COM of a non-uniform rod of length 1.0 m if its 
linear mass distribution is λ(x)=3x+1 kg/m, where x=0 at the 
origin.

 As before, rod is aligned with the x-axis, with one end on (0,0),  and 
yCOM = zCOM = 0.

Do integral using λ = 3x+1

So x
com

 = 1.5/M, but what is M?   M is the total mass.

M=                                           = 5/2.  

So    x
com

=(3/2)/(5/2) = 3/5 =0.6 m

xCOM=
1
M
∫
0

L

x λdx

xCOM=
1
M
∫
0

1. 0

x (3 x+1 ) dx

xCOM=
1
M ( x3+ x2

2 )
0

1 . 0

∫
0

1. 0

λ dx=∫
0

1. 0

(3 x+ 1 )dx= ( 3 x
2

2
+x)

0

1 . 0



  

Rigid Object

 A rigid object is one that is nondeformable
 The relative locations of all particles making up 

the object remain constant
 All real objects are deformable to some extent, 

but the rigid object model is very useful in many 
situations where the deformation is negligible

 This simplification allows analysis of the 
motion of an extended object



  

Angular Position

 Axis of rotation runs 
through the center of 
the disc,  ⟂ the disk.

 Choose a fixed 
reference line

 Point P is at a fixed 
distance r from the 
origin



  

 Point P will rotate about the origin in a circle of 
radius r

 Every point on the disc undergoes circular motion 
about the center.

 Specify the position of point P in polar coordinates 
(r, ) where  is the measured counterclockwise 
from the reference line.

Angular Position, 2



  

Angular Position, 3

 As the particle moves 
through , it moves 
though an arc length s.

 The arc length and r 
are related:
 s =  r
 where θ is in radians



  

The Radian

 This can also be expressed as 

  is dimensionless, but is expressed in units of 
radians (rad).

 Ex) How many radians are subtended by an arc 
length of 6 inches if the radius of the arc is 3 in?

 Ex) How many radians are subtended by an
arclength of 3 in if the radius is 3 in?

– Try to estimate how many degrees this is!

s

r
θ =



  

Conversions

 Comparing degrees and radians
  

 Converting from degrees to radians

1 rad=
360
2 π

≃ 57 . 3

θ (rad )=
π
180

θ (degrees )



  

Angular Position, final

 So the angular position of a point P on an object 
is the angle , measured in radians or degrees.

  is the angle between a radial line running from 
the spin axis to P, and a reference line (usually 
the x-axis) also running through the spin axis. 

DEMO: My CD has two points along the same 
radial line.  How do their angular positions 
compare?



  

Angular Displacement

 The angular displacement is 
defined as the angle the 
object rotates through 
during some time interval

 This is the angle that the 
radial line of length r 
sweeps out.

f iθ θ θΔ = −

DEMO:  How do the angular displacements 
of the two dots on the CD compare?



  

Average Angular Speed

 The average angular speed, ωavg, of a 
rotating rigid object is the ratio of the angular 
displacement to the time interval

f i
avg

f it t t

θ θ θ
ω

− Δ
= =

− Δ



  

Instantaneous Angular Speed

 The instantaneous angular speed is defined 
as the limit of the average speed as the time 
interval approaches zero

lim
0 t

d

t dt

θ θ
ω

Δ →

Δ
≡ =

Δ



  

Angular Speed, final

 Units of angular speed are radians/sec
 rad/s or s-1 since radians have no dimensions

 Angular speed will be positive if θ is 
increasing (counterclockwise)

 Angular speed will be negative if θ is 
decreasing (clockwise)



  

Average Angular Acceleration

 The average angular acceleration, ,               
 

   of an object is defined as the ratio of the 
change in the angular speed to the time it 
takes for the object to undergo the change:

f i
avg

f it t t

ω ω ω
α

− Δ
= =

− Δ



  

Instantaneous Angular 
Acceleration

 The instantaneous angular acceleration is 
defined as the limit of the average angular 
acceleration as the time goes to 0

lim
0 t

d

t dt

ω ω
α

Δ →

Δ
≡ =

Δ



  

Angular Acceleration, final

 Units of angular acceleration are rad/s² or s-2  
since radians have no dimensions

 Angular acceleration will be positive if an 
object rotating counterclockwise is speeding 
up

 Angular acceleration will also be positive if an 
object rotating clockwise is slowing down



  

Angular Motion, mini-quiz

 T or F.  The Δθ, ω, and α are the same for 
every point on a rigid solid.  

 T or F.  The θ, Δθ, ω, and α are the same for 
every point on a rigid solid.

 What is the ωavg (in rad/sec) of a wheel that 
rotates 1 revolution in 2 seconds?

 If a CD spins up from 0 to 50 rad/s in 5 
seconds, what is the αavg?



  

Directions, details

 Strictly speaking, the angular 
speed and acceleration ( are 
the magnitudes of vectors

 The directions are actually given 
by the right-hand rule.



  

Rotational Kinematics

 Under constant angular acceleration, we can 
describe the motion of the rigid object using a set of 
kinematic equations
 These are similar to the kinematic equations for linear 

motion
 The rotational equations have the same mathematical form 

as the linear equations

 The new model is a rigid object under constant 
angular acceleration
 Analogous to the particle under constant acceleration 

model



  

Rotational Kinematic 
Equations

( )

( )

2

2 2

1

2

2

1

2

f i

f i i

f i f i

f i i f

t

t t

t
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ω ω α θ θ

θ θ ω ω

α

= +
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Comparison Between Rotational 
and Linear Equations



Introduction

Outline for W11,D1  
     Rotation of a rigid solid (Ch. 10)
     Relation between (s,v

t
,a

t
) and (θ,ω,α)

     Torque, τ = rF
⟂

     Rotational kinetic energy
     Rotational inertia (or moment of inertia)
       

Homework
Ch. 10 P. 1,4-6,19-21,25,28-30,34,35,37,53,54,55,64,67,69
             Do for Wed/Fri
Notes:  
     No lab this honors week.   
     No class Friday – activity instead.
     See NEW  “Exam-like” questions on Chs. 9-11.
   



  

Relationship Between Angular 
and Linear Quantities

 Path length

 Tangential speed

         vt = ωr
 Tangential acceleration

     at = αr
 Centripetal acceleration

     ac = ω2r

 Every point on the 
rotating object has the 
same angular motion

 Every point on the 
rotating object does not 
have the same linear 
motion

s rθ=



  

Speed Comparison

 The tangential velocity 
is a tangent to the 
circular path

 The magnitude of the 
velocity of point P is the 
tangential speed, vt 

v t=
ds
dt

=rd
θ
dt
=rω



  

Acceleration Comparison

 The tangential 
acceleration is the 
derivative of the 
tangential speed

a t=
dv t
dt

=r
dω
dt

=rα



  

Linear – angular relations.  Examples.

A solid, rotating disk.



  

Linear – angular relations.  Examples.

A solid, rotating disk.



  

Rotational Motion Example

 For a compact disc 
player to read a CD, the 
angular speed must 
vary to keep the 
tangential speed 
constant  (vt = r)

 At the inner sections, 
the angular speed is 
faster than at the outer 
sections

Ex) Find v
t
 at r=23mm if it spins at 500 RPM. v

t
=52.4*.023=1.20m/s

Ex) Find v
t
 at r=58mm if it spins at 200 RPM.  v

t
=20.9*.058=1.21m/s



  

Torque

 Torque, , is a force times a distance which 
changes the rotation rate of an object 
  Torque is a vector, but we will deal with its 

magnitude first.  (Cross products appear in Ch. 11)

  = F r sin  = F d 
 F is the force
  is the angle the force makes with the line extending 

from the axis to the point of application of F. 
 d is the moment arm (or lever arm) of the force



Introduction

Outline for W11,D2  
     Torque Example (τ = rF

⟂
)

     Rotational kinetic energy
     Rotational inertia (or moment of inertia)
       

Homework
Ch. 10 P. 1,4-6,19-21,25,28-30,34,35,37,53,54,55,64,67,69
             Do for Wed/Fri
Ch. 11 P. 1,2,3,5,36,42,48   Do before Exam II (4/23 or 4/25)

Notes:  
     No lab this honors week.   
     No class Friday – see email for activity instead.
     See NEW lists of equations for Exam II and Ch. 11 links.
   



  

Torque, cont

 The moment arm, d, is 
the perpendicular 
distance from the axis 
of rotation to a line 
drawn along the 
direction of the force
 d = r sin Φ

Ex) A force of 10 N is applied 20 cm away from the nut it
is tightening in a direction 60° away from the wrench
arm.  Find the torque.
Q: What if θ = 90°?   Q: What if r=10 cm and θ = 90°? 



  

Torque, direction

 The horizontal component of the force (F cos 
) has no tendency to produce a rotation

 Torque has a direction
 If the turning tendency of the force is 

counterclockwise (CCW), the torque will be 
positive

 If the turning tendency is clockwise (CW), the 
torque will be negative



  

Net Torque

 The force    will tend to 
cause a 
counterclockwise 
rotation about O

 The force     will tend to 
cause a clockwise 
rotation about O

 F1d1 – 
F2d2

1F
r

2F
r



  

Net Torque - Example

P. 30)  Calculate the net torque about the axle of the wheel
shown in Fig. 10-54.  Assume that a friction torque of 0.60 Nm
opposes the motion.


net

fric

τ
app

 = 28N(.24m)-35N(.12m)-18N(.24m)

      =  6.72 – 4.2 – 4.32
      =  -1.8          (- implies CW)
Thus, 

fric
 = 0.60 Nm     (CCW)

and τ
net

 = -1.2 Nm  



  

Torque vs. Force

 Forces can cause a change in translational 
motion

– Described by Newton’s 2nd Law:  Fnet=ma

 Torques can cause a change in rotational 
motion

– The Newton’s 2nd law analog:  netα

– Where  is rotational inertia



  

Torque Units

 The SI units of torque are N.m
 Although torque is a force multiplied by a 

distance, it is very different from work and energy
 The units for torque are reported in N.m and not 

changed to Joules



  

Torque and Angular 
Acceleration, Wheel Example

 Analyze:
 The wheel is rotating 

and so we apply 

 The tension supplies the 

tangential force
 The mass is moving in 

a straight line, so apply 
Newton’s Second Law
 Fy = may = mg - T

Ex) Find the angular acceleration of the wheel if its R=12cm and its
I=0.05 kg m2 and the hanging mass m=2 kg.   α=29.8 rad/s2

Ex) Find the linear acceleration of the mass m.  a
y
=3.58 m/s2



  

Torque and Angular 
Acceleration

See link “Torque and rotational kinematics example” 
for another worked example of τ = Iα.
This one applies to a grinding wheel.



  

Rotational Kinetic Energy

 An object rotating about some axis with an angular 
speed, ω, has rotational kinetic energy.  Lets derive 
Krot = ½ I ω2 

 Each particle, mi, (like the one at P) has a kinetic 
energy of
 Ki = ½ mivi2

 The vi is a tangential velocity at P and can be 
replaced by vi = i r



  

Rotational Kinetic Energy, cont

 The total rotational kinetic energy of the rigid 
object is the sum of the energies of all its 
particles

 Where I is called the moment of inertia

K R=∑
i

K i=∑
i

1
2
m i r i

2ω 2

K R=
1
2 (∑i

mi r i
2

)ω
2
=
1
2
Iω 2



  

Rotational Kinetic Energy, final

 There is an analogy between the kinetic energies 
associated with linear motion (K = ½ mv 2) and the 
kinetic energy associated with rotational motion (KR= 
½ I2)

 Rotational kinetic energy is not a new type of 
energy, the form is different because it is applied to 
a rotating object

 The units of rotational kinetic energy are Joules (J)



  

Rotational Kinetic Energy

Example) Find the total KE of a baseball (mass m, 
radius R) with a speed v and a spin ω.

Ans: Ktot = Krot + Ktrans



  

Moment of Inertia

 The definition of moment of inertia (for a 
collection of discrete masses) is 

 The dimensions of moment of inertia are ML2 
and its SI units are kg.m2

We can calculate the moment of inertia of an 
extended object by assuming it is divided into 
small volume elements, mi, and taking the limit 
towards zero size:  mi  = dm

2
i i

i

I r m=∑



  

Moment of Inertia, cont

 We can rewrite the expression for I in terms of m

 With the small volume segment assumption,

 If  is constant, the integral can be evaluated with 
known geometry, otherwise its variation with position 
must be known

lim 2 2
0im i i

i

I r m r dm
Δ →

= Δ =∑ ∫

2I r dVρ=∫



  

Notes on Various Densities

 Volumetric Mass Density → mass per unit 
volume:  = m / V

 Surface Mass Density → mass per unit 
thickness of a sheet of uniform thickness, t : 
t

 Linear Mass Density → mass per unit length 
of a rod of uniform cross-sectional area:   = 
m / L = 



  

Moment of Inertia of a Uniform 
Rigid Rod

 The shaded area has a 
mass 
 dm =  dx

 For a uniform rod, 
λ=M/L

 Then the moment of 
inertia is

Q: What is I
y’ 

(relative to y’)?  Ans:   I y'=
4
12

ML2

I y=
1
12

ML2

I y=∫ r 2dm= ∫
− L/ 2

L/2

x2
M
L
dx



  

Moment of Inertia of a Uniform 
Solid Cylinder

 Divide the cylinder into 
concentric shells with 
radius r, thickness dr 
and length L

 dm =  dV = 2πrLdr
 Then for I

( )2 2

2

2  

1

2

z

z

I r dm r Lr dr

I MR

πρ= =

=

∫ ∫



Introduction

Outline for W12,D1  
     Friday activity on rolling round objects.
     Rotational inertia of a system of point masses
     Parallel axis theorem
     W=τdθ  and P=τω
Homework
Ch. 10 P. 1,4-6,19-21,25,28-30,34,35,37,53,54,55,64,67,69
             Do for last Wed/Fri
Ch. 11 P. 1,2,3,5,36,42,48  
             Do for next Wed.  (4/23 or 4/25 for Exam II)

Notes:  
    Lab on oscillatory motion.   
     No class on Good Friday.
    Still updating Ch. 10 and 11 PDFs.
   



Answers:

1) t = 1.78 sec

2) t = 1.54 sec

1) Figure out the time it will take for a 1 kg rigid hoop with a radius
of 0.15 m to roll down a 15 degree incline with a 2 meter length.
                                                                                            for hoop
2) Figure out the time it will take for a 3 kg rigid disk with radius 0.45 m
to roll down the same incline as in #1. 
                                                                                               for disk/cylinder

Friday activity – follow up

v f=√
2g (hi−h f )

(1+ f )
v avg=

v i+ v f
2 t=

L
v avg

Note: see textbook’s Example 10-19
to see how static friction creates the 
torque in the rolling object.
Recall:  the car (or block) on the frictionless
incline had a=g sin θ.  It’s v

f
 =3.19 m/s

from                          gives t=L/1.59=1.26 s.v f=√2 Lg sin θ

I=MR 2=0.023

I=
1
2
MR2=0.304



AI response:
“The time it takes for a circular object to roll down an incline is not 
solely determined by its mass or radius. The object's shape and how its 
mass is distributed (its moment of inertia) play a more significant role. 
A solid sphere will reach the bottom of an incline faster than a hollow 
cylinder of the same mass and radius.”

3) Google the following and read the AI generated answer:
"How does the time for a circular object to roll down an incline depend
on the mass and radius of the object?"
Write down whether you think this answer is fully correct or needs 
qualification.

Friday activity (cont.)

The object’s shape and mass distribution is all that matters (for a given 
smooth incline and no air resistance). Only the f matters for determining 
a

COM
 = a

t
 = Rα.

I COM= fMR 2



AI response:
“In summary: While mass and radius do play a role, the shape and 
moment of inertia are the key factors determining the time it takes for a 
circular object to roll down an incline. Objects with a smaller moment 
of inertia (like a solid sphere) will accelerate faster and reach the 
bottom first.”

3) Google the following and read the AI generated answer:
"How does the time for a circular object to roll down an incline depend
on the mass and radius of the object?"
Write down whether you think this answer is fully correct or needs 
qualification.

Friday activity (cont.)

The summary is even worse!  Objects with a smaller f-factor will accelerate
faster, but they can have virtually ANY moment of inertia.
Q: Do the M and R of a pulley wheel matter when a mass m is
hung from the pulley’s string?   

I COM= fMR 2



  

Torque and α, Wheel Example:
correction

a) Find the angular acceleration of the wheel if its R=12cm and its
I=0.05 kg m2 and the hanging mass m=2 kg.   α=29.8 rad/s2

b) Find the linear acceleration of the mass m.  a
y
=3.58 m/s2

a) τ = Iα  so  α = τ /I 
 But τ ≠mgr !  τ=Tr where T is the tension.
 F

net 
= ma

y
 = mg-T  (Newton’s 2nd for m)

 So T = mg – ma
y 

 
But a

y
 = a

t
 = αr.  So T = mg – mαr   and

 α = (mg-mαr)r/I   Solve for α ...
 α + mαr2/I = mgr/I
 α (1+mr2/I) = mgr/I
 α (1+2(.12)2/.05)=2(9.8)(.12)/.05
 α = 47.04/(1.576) = 29.8 rad/s2   (Not 47.0)
b) a

y
 = αr = 29.8*0.12 = 3.58 m/s2  (Not 5.6) 

α=
mgr

fMr 2+Mr2



  

Parallel-Axis Theorem

 In the previous examples, the axis of rotation 
coincided with the axis of symmetry of the object

 For an arbitrary axis, the parallel-axis theorem often 
simplifies calculations

 The theorem states I = ICM + MD 2 
 I is about any axis parallel to the axis through the center of 

mass of the object
 ICM  is about the axis through the center of mass
 D is the distance from the center of mass axis to the 

arbitrary axis



  

Moments of Inertia of Various 
Rigid Objects



  

Parallel-Axis Theorem 
Example
 The axis of rotation 

goes through O
 The axis through the 

center of mass is 
shown

 The moment of inertia 
about the axis through 
O would be IO = ICM + 
MD 2



  

Moment of Inertia for a Rod 
Rotating Around One End

 The moment of inertia 
of the rod about its 
center is 

 D is ½ L
 Therefore, 

21

12CMI ML=

2
CM

2
2 21 1

12 2 3

I I MD

L
I ML M ML

= +

⎛ ⎞
= + =⎜ ⎟

⎝ ⎠



  

Work in Rotational Motion

 Find the work done by    on 
the object as it rotates 
through an infinitesimal 
distance ds = r d

 The radial component of the 
force does no work because 
it is perpendicular to the
displacement

F
r

( )sin

dW d

F r dφ θ

=

=

F s
r r
g



  

Power in Rotational Motion

 The rate at which work is being done in a 
time interval dt is

 This is analogous to  = Fv in a linear 
system

Power
dW d

dt dt

θ
τ τω=℘ = = =



  

Summary of Useful Equations



  

Energy in an Atwood Machine, 
Example

 The blocks undergo 
changes in translational 
kinetic energy and 
gravitational potential 
energy

 The pulley undergoes a 
change in rotational 
kinetic energy

 Use the active figure to 
change the masses and 
the pulley characteristics



  

Rolling Object

 The red curve shows the path moved by a point on the rim of 
the object
 This path is called a cycloid

 The green line shows the path of the center of mass of the 
object



  

Pure Rolling Motion

 In pure rolling motion, an object rolls without 
slipping

 In such a case, there is a simple relationship 
between its rotational and translational 
motions:

v
CM

 = v
t
 = ωr



  

Rolling Object, Center of Mass

 The velocity of the 
center of mass is

 The acceleration of the 
center of mass is

CM

ds d
v R R

dt dt

θ
ω= = =

CM
CMdv d

a R R
dt dt

ω
α= = =



  

Rolling Motion Cont.

 Rolling motion can be modeled as a combination of 
pure translational motion and pure rotational motion

 The contact point between the surface and the 
cylinder has a translational speed of zero (c)



  

Total Kinetic Energy of a 
Rolling Object

 The total kinetic energy of a rolling object is 
the sum of the translational energy of its 
center of mass and the rotational kinetic 
energy about its center of mass
 K = ½ ICM 2 + ½ MvCM2

 The ½ ICM2 represents the rotational kinetic energy of 
the cylinder about its center of mass

 The ½ Mv2 represents the translational kinetic energy 
of the cylinder about its center of mass



  

Total Kinetic Energy, Example
 Accelerated rolling motion is 

possible only if friction is 
present between the sphere 
and the incline
 The friction produces the 

net torque required for 
rotation

 No loss of mechanical 
energy occurs because the 
contact point is at rest 
relative to the surface at 
any instant

 Use the active figure to vary 
the objects and compare 
their speeds at the bottom



  

Total Kinetic Energy, Example 
cont

 Apply Conservation of Mechanical Energy
 Let U = 0 at the bottom of the plane
 Kf + U f = Ki + Ui      Since ω2 = v2

CM / R2  for pure rolling ...
 Kf = ½ (ICM / R2)vCM2 + ½ MvCM2

 Ui = Mgh
 Uf = Ki = 0

 Solving for v

2
2

1

2
CM

CM

I
M v

R
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

1
2

2

2

1 CM

gh
v

I
MR

⎡ ⎤
⎢ ⎥

=⎢ ⎥
⎛ ⎞⎢ ⎥+⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

vCM=√
2 g(hi−hf )
(1+ f )



  

Sphere Rolling Down an 
Incline, Example

 Conceptualize
 A sphere is rolling down an incline

 Categorize
 Model the sphere and the Earth as an isolated 

system
 No nonconservative forces are acting

 Analyze
 Use Conservation of Mechanical Energy to find v

 See previous result



  

Sphere Rolling Down an 
Incline, Example cont

 Analyze, cont
 Solve for the acceleration of the center of mass

 Finalize
 Both the speed and the acceleration of the center 

of mass are independent of the mass and the 
radius of the sphere

 Generalization
 All homogeneous solid spheres experience the 

same speed and acceleration on a given incline
 Similar results could be obtained for other shapes



Introduction

Outline for W12,D2  
     Angular Momentum
                        (for rigid solids)
     Conservation of Angular Momentum 
                          (for point-like objects)
      Vector cross-products

Homework
Ch. 11 P. 1,2,3,5,36,42,48  (skip 11.7 through 11.9)
             Do for next Wed.  (Wed 4/23  is Exam II)
Notes:  
    Exam II next Wed, Review on Monday
    Lab on oscillatory motion.  x(t)=Asin(ωt)   
    No class on Good Friday.
    Ch. 10 PDF will include Ch. 11 lectures at the end.
   

L⃗=I ω⃗

L⃗= r⃗× p⃗
L⃗TOT= L⃗ 'TOT



Angular Momentum

Angular Momentum: a measure of how hard it is to stop an
object from spinning.
*                          (rotational analog to           )
* I, rotational inertia, is a measure of how hard it is to change
   the spin rate of an object
* ω, angular frequency, is spin rate
    
       Relation to torque
* It takes more torque x time to stop an object with a large L.
                           rotational analog to
* The faster L changes with time, the greater the net torque:
                           rotational analog to   

L⃗=I ω⃗ p⃗= m v⃗

Δ p⃗=∫ F⃗ dtΔ L⃗=∫ τ⃗ dt

d L⃗
dt

= τ⃗net
d p⃗
dt

=F⃗net



  

 Angular momentum, L, is in the 
same direction as ω!  But only
when the rotation axis is an axis
of symmetry, like this disk.  (See 
Fig 11-18 for an exception.)

 Remember the right-hand rule.

Direction of Angular Momentum



  

Examples

P. 11-2)  (a) What is the angular momentum of a 2.8 kg uniform
cylindrical grinding wheel of radius 18cm when rotating at
1500 rpm?   (b) How much torque is required to stop it in 6.0 s?

   (a)  Use

                                                                           L=7.1 kg m2 s-1

   (b) Use                    →

                                                                          τ
avg

=-1.2 Nm

L⃗=I ω⃗

d L⃗
dt

= τ⃗net
Δ L⃗
Δ t

= τ⃗avg



  

Conservation of angular 
momentum

The total angular momentum of an isolated system

is constant.  
L⃗TOT = L⃗ 'TOT

* “Isolated” implies no torques from outside of the system.

* Two or more objects could interact by bouncing off of
each other or sticking together.  The total angular momentum,
measured relative to any axis, will stay constant.

*One deformable object will change it’s ω if it changes its shape.

Example 11-2 “Clutch” from textbook. 

Example:  figure skaters on ice. 



  

Conservation of angular 
momentum

L⃗TOT = L⃗ 'TOT

Problem 11.9)  A uniform disk turns at 4.1 rev/s around a friction-
Less central axis.  A non-rotating rod, of the same mass as the disk
and length equal to the disks diameter, is dropped onto the freely
spinning disk.  They then turn together around the spindle with 
their centers superposed.  What is the angular frequency in
rev/s of the combination?

I
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But I
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=1/2MR2, I
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ω
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= 2.46 rev/s



  

Conservation of angular 
momentum

L⃗TOT= L⃗ 'TOT

Example)  The YouTube Video of a man holding a spinning
Wheel while standing on swivel platform.

System of 2 parts: man on platform, wheel.

                                                   Wheel axis flipped 180○

Before: man+platform has L
mp

=0,

             Wheel has L
w
 up.

After:  Wheel has L
w
 down, so ΔL

w
 = -L

w
-L

w
= -2L

w

            So man+platform must have ΔL
mp

=+2L
w

                     
Since ΔL

mp
=L

mp
-0,  L

mp
 = 2L

w
 up.



  

L for a translating “point” mass



  

Vector cross products – torque 
revisited



Introduction

Outline for W13,D1  
      Exam II Information
      Vector cross-products
      Review – questions on exam-like problems?
                   - questions on homeworks?

Homework
Ch. 11 P. 1,2,3,5,36,42,48  (skip 11.7 through 11.9)
             Do for Wed.  (Wed 4/23  is Exam II)
Ch. 17 P. 3,4,8,10,11,20,30,33,34,35,37,43
             Do for Fri of next week.
Notes:  
    Exam II on Wed
    Lab on The Pendulum.  (Ch. 14 Oscillations)    
    Ch. 10 PDF includes Ch. 11 lectures at the end.
   



Exam II  Info
Place: usual classroom
Time: Usual class time, stop after 52 minutes
Format:  multiple choice (just like “exam-like problems”
     Expect 4-5 pages, about 33 questions
     About ½ page of formulas
     Using scantrons, so bring #2 pencils and your ID
     You’ll get back both the test and the scantron later
     Calculators allowed.
     Phones, textbook, notes, visors, earphones not allowed.
     Come forward for questions.
     Scratch paper available
Coverage: Chs. 7-11.  Skipped 8.7, 8.10, 9.9,9.10,10.10,
                                    11.7,11.8,11.9
Study aids: exam-like problems, practice quizzes, PDFs of
   Powerpoints, notes, textbook summaries, homeworks and 
   homework keys.
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