
  

Chapter 10

Rotation of a Rigid Object

about a Fixed Axis



Introduction

Outline for W12,D1 
     Return Quiz 4. Mean = 7.1/9
     Rotation of a rigid solid (Ch. 10)
       Worksheet review
       The vector nature of ω and α
       Torque
      

Homework
Ch. 10 P. 1,4-6,19-21,25,28-30,34,35,37,53,54,55,64,67,69
             Due Wed?

Notes:  
     Still grading Ch. 8
     Last day to “W” is Apr 19.



Introduction

Outline for W12,D2 
     Rotation of a rigid solid (Ch. 10)
       The vector nature of ω and α
       Torque
       Rotational inertia 
      

Homework
Ch. 10 P. 1,4-6,19-21,25,28-30,34,35,37,53,54,55,64,67,69
             Due Wed?  Fri

Notes:  
     Still grading Ch. 9
     Last day to “W” is Apr 19.

τ⃗=I α⃗
τ⃗= r⃗×F⃗



Introduction

Outline for W12,D3 
     Rotation of a rigid solid (Ch. 10)
        Rotational inertia 
         Rotational dynamics problems
        Rotational kinetic energy
        Rotation + translation (rolling objects)

Homework
Ch. 10 P. 1,4-6,19-21,25,28-30,34,35,37,53,54,55,64,67,69
             Due today < 3 pm
Ch. 11 Read 11.1-11.6, P. 1,2,3,5,36,42,48  Due Wed

Notes:  
     Graded Ch. 9  mean=9.25/10. Checked MQ 5,7, P. 18, 61(Ch8)
     Last day to “W” is Apr 19, today.

τ⃗=I α⃗
I=∑ mir i
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Rigid Object

 A rigid object is one that is nondeformable
 The relative locations of all particles making up 

the object remain constant
 All real objects are deformable to some extent, 

but the rigid object model is very useful in many 
situations where the deformation is negligible

 This simplification allows analysis of the 
motion of an extended object



  

Angular Position

 Axis of rotation is the 
center of the disc

 Choose a fixed 
reference line

 Point P is at a fixed 
distance r from the 
origin
 A small element of the 

disc can be modeled as 
a particle at P



  

Angular Position, 2

 Point P will rotate about the origin in a circle of 
radius r

 Every particle on the disc undergoes circular motion 
about the origin, O

 Polar coordinates are convenient to use to represent 
the position of P (or any other point)

 P is located at (r, ) where r is the distance from the 
origin to P and  is the measured counterclockwise 
from the reference line



  

Angular Position, 3

 As the particle moves, 
the only coordinate that 
changes is 

 As the particle moves 
through , it moves 
though an arc length s.

 The arc length and r 
are related:
 s =  r



  

Radian

 This can also be expressed as 

  is a pure number, but commonly is given 
the artificial unit, radian

 One radian is the angle subtended by an arc 
length equal to the radius of the arc

 Whenever using rotational equations, you 
must use angles expressed in radians

s

r
 =



  

Conversions

 Comparing degrees and radians
  

 Converting from degrees to radians

360
1 57.3

2
rad

π

°= = °

( ) ( )
180

rad degrees
π

θ θ=
°



  

Angular Position, final

 We can associate the angle  with the entire 
rigid object as well as with an individual 
particle
 Remember every particle on the object rotates 

through the same angle
 The angular position of the rigid object is the 

angle  between the reference line on the 
object and the fixed reference line in space
 The fixed reference line in space is often the x-

axis



  

Angular Displacement

 The angular displacement is 
defined as the angle the 
object rotates through 
during some time interval

 This is the angle that the 
reference line of length r 
sweeps out

f i  Δ = −



  

Average Angular Speed

 The average angular speed, ωavg, of a 
rotating rigid object is the ratio of the angular 
displacement to the time interval

f i
avg

f it t t

  
ω
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− Δ



  

Instantaneous Angular Speed

 The instantaneous angular speed is defined 
as the limit of the average speed as the time 
interval approaches zero

lim
0 t

d

t dt

 
ω

Δ →

Δ
≡ =

Δ



  

Angular Speed, final

 Units of angular speed are radians/sec
 rad/s or s-1 since radians have no dimensions

 Angular speed will be positive if θ is 
increasing (counterclockwise)

 Angular speed will be negative if θ is 
decreasing (clockwise)



  

Average Angular Acceleration

 The average angular acceleration, α,               
 

   of an object is defined as the ratio of the 
change in the angular speed to the time it 
takes for the object to undergo the change:
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avg

f it t t

ω ω ω
α
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− Δ



  

Instantaneous Angular 
Acceleration

 The instantaneous angular acceleration is 
defined as the limit of the average angular 
acceleration as the time goes to 0

lim
0 t

d

t dt

ω ω
α

Δ →

Δ
≡ =

Δ



  

Angular Acceleration, final

 Units of angular acceleration are rad/s² or s-2  
since radians have no dimensions

 Angular acceleration will be positive if an 
object rotating counterclockwise is speeding 
up

 Angular acceleration will also be positive if an 
object rotating clockwise is slowing down



  

Angular Motion, General Notes

 When a rigid object rotates about a fixed axis 
in a given time interval, every portion on the 
object rotates through the same angle in a 
given time interval and has the same angular 
speed and the same angular acceleration
 So ωα all characterize the motion of the 

entire rigid object as well as the individual 
particles in the object



  

Directions, details

 Strictly speaking, the 
speed and acceleration 
(ωα are the 
magnitudes of the 
velocity and 
acceleration vectors

 The directions are 
actually given by the 
right-hand rule



  

Hints for Problem-Solving

 Similar to the techniques used in linear motion 
problems
 With constant angular acceleration, the techniques are 

much like those with constant linear acceleration
 There are some differences to keep in mind

 For rotational motion, define a rotational axis
 The choice is arbitrary
 Once you make the choice, it must be maintained
 In some problems, the physical situation may suggest a 

natural axis
 The object keeps returning to its original orientation, so you 

can find the number of revolutions made by the body



  

Rotational Kinematics

 Under constant angular acceleration, we can 
describe the motion of the rigid object using a set of 
kinematic equations
 These are similar to the kinematic equations for linear 

motion
 The rotational equations have the same mathematical form 

as the linear equations

 The new model is a rigid object under constant 
angular acceleration
 Analogous to the particle under constant acceleration 

model



  

Rotational Kinematic 
Equations
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Comparison Between Rotational 
and Linear Equations



  

Relationship Between Angular 
and Linear Quantities

 Displacements

 Speeds

 Accelerations

 Every point on the 
rotating object has the 
same angular motion

 Every point on the 
rotating object does not 
have the same linear 
motion

s r=

v rω=

a rα=



  

Speed Comparison

 The linear velocity is 
always tangent to the 
circular path
 Called the tangential 

velocity

 The magnitude is 
defined by the 
tangential speed

ds d
v r r

dt dt


ω= = =



  

Acceleration Comparison

 The tangential 
acceleration is the 
derivative of the 
tangential velocity

t

dv d
a r r

dt dt

ω
α= = =



  

Speed and Acceleration Note

 All points on the rigid object will have the 
same angular speed, but not the same 
tangential speed

 All points on the rigid object will have the 
same angular acceleration, but not the same 
tangential acceleration

 The tangential quantities depend on r, and r 
is not the same for all points on the object



  

Centripetal Acceleration

 An object traveling in a circle, even though it 
moves with a constant speed, will have an 
acceleration
 Therefore, each point on a rotating rigid object will 

experience a centripetal acceleration
2

2
C

v
a r

r
ω= =



  

Resultant Acceleration

 The tangential component of the acceleration 
is due to changing speed

 The centripetal component of the 
acceleration is due to changing direction

 Total acceleration can be found from these 
components

2 2 2 2 2 4 2 4
t ra a a r r rα ω α ω= + = + = +



  

Rotational Motion Example

 For a compact disc 
player to read a CD, 
the angular speed must 
vary to keep the 
tangential speed 
constant  (vt = ωr)

 At the inner sections, 
the angular speed is 
faster than at the outer 
sections



  

Rotational Kinetic Energy

 An object rotating about some axis with an angular 
speed, ω, has rotational kinetic energy even though 
it may not have any translational kinetic energy

 Each particle has a kinetic energy of
 Ki = ½ mivi2

 Since the tangential velocity depends on the 
distance, r, from the axis of rotation, we can 
substitute vi = ωi r



  

Rotational Kinetic Energy, cont

 The total rotational kinetic energy of the rigid 
object is the sum of the energies of all its 
particles

 Where I is called the moment of inertia
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Rotational Kinetic Energy, final

 There is an analogy between the kinetic energies 
associated with linear motion (K = ½ mv 2) and the 
kinetic energy associated with rotational motion (KR= 
½ Iω2)

 Rotational kinetic energy is not a new type of 
energy, the form is different because it is applied to 
a rotating object

 The units of rotational kinetic energy are Joules (J)



  

Moment of Inertia

 The definition of moment of inertia is 

 The dimensions of moment of inertia are ML2 
and its SI units are kg.m2

 We can calculate the moment of inertia of an 
object more easily by assuming it is divided 
into many small volume elements, each of 
mass Δmi

2
i i

i

I r m=∑



  

Moment of Inertia, cont

 We can rewrite the expression for I in terms of Δm

 With the small volume segment assumption,

 If  is constant, the integral can be evaluated with 
known geometry, otherwise its variation with 
position must be known

lim 2 2
0im i i

i

I r m r dm
Δ →
= Δ =∑ ∫

2I r dV= ∫



  

Notes on Various Densities

 Volumetric Mass Density → mass per unit 
volume:  = m / V

 Surface Mass Density → mass per unit 
thickness of a sheet of uniform thickness, t : 
t

 Linear Mass Density → mass per unit length 
of a rod of uniform cross-sectional area:   = 
m / L = 



  

Moment of Inertia of a Uniform 
Rigid Rod

 The shaded area has a 
mass 
 dm =  dx

 Then the moment of 
inertia is

/ 22 2

/ 2
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Moment of Inertia of a Uniform 
Solid Cylinder

 Divide the cylinder into 
concentric shells with 
radius r, thickness dr 
and length L

 dm =  dV = 2πLr dr
 Then for I
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Moments of Inertia of Various 
Rigid Objects



  

Parallel-Axis Theorem

 In the previous examples, the axis of rotation 
coincided with the axis of symmetry of the object

 For an arbitrary axis, the parallel-axis theorem often 
simplifies calculations

 The theorem states I = ICM + MD 2 
 I is about any axis parallel to the axis through the center of 

mass of the object
 ICM  is about the axis through the center of mass
 D is the distance from the center of mass axis to the 

arbitrary axis



  

Parallel-Axis Theorem 
Example

 The axis of rotation 
goes through O

 The axis through the 
center of mass is 
shown

 The moment of inertia 
about the axis through 
O would be IO = ICM + 
MD 2



  

Moment of Inertia for a Rod 
Rotating Around One End

 The moment of inertia 
of the rod about its 
center is 

 D is ½ L
 Therefore, 
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Torque

 Torque, τ, is the tendency of a force to rotate 
an object about some axis
  Torque is a vector, but we will deal with its 

magnitude here
 τ = r F sin  = F d 

 F is the force
  is the angle the force makes with the horizontal 
 d is the moment arm (or lever arm) of the force



  

Torque, cont

 The moment arm, d, is 
the perpendicular 
distance from the axis 
of rotation to a line 
drawn along the 
direction of the force
 d = r sin Φ



  

Torque, final

 The horizontal component of the force (F cos 
) has no tendency to produce a rotation

 Torque will have direction
 If the turning tendency of the force is 

counterclockwise, the torque will be positive
 If the turning tendency is clockwise, the torque will 

be negative



  

Net Torque

 The force    will tend to 
cause a 
counterclockwise 
rotation about O

 The force     will tend to 
cause a clockwise 
rotation about O

 τττF1d1 – 
F2d2

1F
r

2F
r



  

Torque vs. Force

 Forces can cause a change in translational 
motion
 Described by Newton’s Second Law

 Forces can cause a change in rotational 
motion
 The effectiveness of this change depends on the 

force and the moment arm
 The change in rotational motion depends on the 

torque



  

Torque Units

 The SI units of torque are N.m
 Although torque is a force multiplied by a 

distance, it is very different from work and energy
 The units for torque are reported in N.m and not 

changed to Joules



  

Torque and Angular 
Acceleration

 Consider a particle of 
mass m rotating in a 
circle of radius r under 
the influence of 
tangential force 

 The tangential force 
provides a tangential 
acceleration:
 Ft = mat

 The radial force,     
causes the particle to 
move in a circular path

tF
r

rF
r



  

Torque and Angular 
Acceleration, Particle cont.

 The magnitude of the torque produced by       
around the center of the circle is
 τ = Ft r = (mat) r

 The tangential acceleration is related to the angular 
acceleration
 τ = (mat) r = (mrα) r = (mr 2) α

 Since mr 2 is the moment of inertia of the particle,
 τ = Iα
 The torque is directly proportional to the angular 

acceleration and the constant of proportionality is the 
moment of inertia

t∑F
r



  

Torque and Angular 
Acceleration, Extended
 Consider the object consists 

of an infinite number of 
mass elements dm of 
infinitesimal size

 Each mass element rotates 
in a circle about the origin, 
O

 Each mass element has a 
tangential acceleration



  

Torque and Angular 
Acceleration, Extended cont.

 From Newton’s Second Law
 dFt = (dm) at

 The torque associated with the force and 
using the angular acceleration gives
 dτ = r dFt = atr dm = αr 2 dm

 Finding the net torque
  
 This becomes τα

2 2r dm r dmτ α α= =∑ ∫ ∫



  

Torque and Angular 
Acceleration, Extended final

 This is the same relationship that applied to a 
particle

 This is the mathematic representation of the 
analysis model of a rigid body under a net torque

 The result also applies when the forces have radial 
components
 The line of action of the radial component must pass 

through the axis of rotation
 These components will produce zero torque about the axis



  

Falling Smokestack Example
 When a tall smokestack 

falls over, it often breaks 
somewhere along its length 
before it hits the ground

 Each higher portion of the 
smokestack has a larger 
tangential acceleration than 
the points below it

 The shear force due to the 
tangential acceleration is 
greater than the 
smokestack can withstand

 The smokestack breaks



  

Torque and Angular 
Acceleration, Wheel Example

 Analyze:
 The wheel is rotating 

and so we apply 
τα
 The tension supplies the 

tangential force
 The mass is moving in 

a straight line, so apply 
Newton’s Second Law
 Fy = may = mg - T



  

Work in Rotational Motion

 Find the work done by    on 
the object as it rotates 
through an infinitesimal 
distance ds = r d

 The radial component of the 
force does no work because 
it is perpendicular to the
displacement

F
r

( )sin

dW d

F r dφ θ

=

=

F s
r r
g



  

Power in Rotational Motion

 The rate at which work is being done in a 
time interval dt is

 This is analogous to  = Fv in a linear 
system

Power
dW d

dt dt


τ τω=℘ = = =



  

Work-Kinetic Energy Theorem 
in Rotational Motion

 The work-kinetic energy theorem for 
rotational motion states that the net work 
done by external forces in rotating a 
symmetrical rigid object about a fixed axis 
equals the change in the object’s rotational 
kinetic energy

2 21 1

2 2
f

i

ù

f iù
W Iù dù Iù Iù= = −∑ ∫



  

Work-Kinetic Energy Theorem, 
General

 The rotational form can be combined with the 
linear form which indicates the net work done 
by external forces on an object is the change 
in its total kinetic energy, which is the sum of 
the translational and rotational kinetic 
energies



  

Summary of Useful Equations



  

Energy in an Atwood Machine, 
Example

 The blocks undergo 
changes in translational 
kinetic energy and 
gravitational potential 
energy

 The pulley undergoes a 
change in rotational 
kinetic energy

 Use the active figure to 
change the masses and 
the pulley characteristics



  

Rolling Object

 The red curve shows the path moved by a point on the rim of 
the object
 This path is called a cycloid

 The green line shows the path of the center of mass of the 
object



  

Pure Rolling Motion

 In pure rolling motion, an object rolls without 
slipping

 In such a case, there is a simple relationship 
between its rotational and translational 
motions



  

Rolling Object, Center of Mass

 The velocity of the 
center of mass is

 The acceleration of the 
center of mass is

CM

ds d
v R R

dt dt


ω= = =

CM
CMdv d

a R R
dt dt

ω
α= = =



  

Rolling Motion Cont.

 Rolling motion can be modeled as a combination of 
pure translational motion and pure rotational motion

 The contact point between the surface and the 
cylinder has a translational speed of zero (c)



  

Total Kinetic Energy of a 
Rolling Object

 The total kinetic energy of a rolling object is 
the sum of the translational energy of its 
center of mass and the rotational kinetic 
energy about its center of mass
 K = ½ ICM ω2 + ½ MvCM2

 The ½ ICMω2 represents the rotational kinetic energy of 
the cylinder about its center of mass

 The ½ Mv2 represents the translational kinetic energy 
of the cylinder about its center of mass



  

Total Kinetic Energy, Example
 Accelerated rolling motion is 

possible only if friction is 
present between the sphere 
and the incline
 The friction produces the 

net torque required for 
rotation

 No loss of mechanical 
energy occurs because the 
contact point is at rest 
relative to the surface at 
any instant

 Use the active figure to vary 
the objects and compare 
their speeds at the bottom



  

Total Kinetic Energy, Example 
cont

 Apply Conservation of Mechanical Energy
 Let U = 0 at the bottom of the plane
 Kf + U f = Ki + Ui

 Kf = ½ (ICM / R2) vCM2 + ½ MvCM2

 Ui = Mgh
 Uf = Ki = 0

 Solving for v
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M v
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Sphere Rolling Down an 
Incline, Example

 Conceptualize
 A sphere is rolling down an incline

 Categorize
 Model the sphere and the Earth as an isolated 

system
 No nonconservative forces are acting

 Analyze
 Use Conservation of Mechanical Energy to find v

 See previous result



  

Sphere Rolling Down an 
Incline, Example cont

 Analyze, cont
 Solve for the acceleration of the center of mass

 Finalize
 Both the speed and the acceleration of the center 

of mass are independent of the mass and the 
radius of the sphere

 Generalization
 All homogeneous solid spheres experience the 

same speed and acceleration on a given incline
 Similar results could be obtained for other shapes
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