Chapter 4

Spectroscopy

Chapter 4 Spectroscopy

What's a spectrum?

Kirchoff's laws and the 3 types of spectra

The Formation of Spectral Lines

The Energy Levels of the Hydrogen Atom

The Photoelectric Effect

Molecules (skip)

What can we learn from spectra?

Spectrum: a graphic depiction of light intensity as a function of wavelength, frequency, or energy.

Spectroscope: splits light into component colors

Kirchhoff's laws:

- Luminous solid, liquid, or dense gas produces <u>continuous spectrum</u>
- Low-density, hot gas produces <u>emission</u> <u>spectrum</u>
- Continuous spectrum incident on cool, thin gas produces <u>absorption spectrum</u>

4.1 Spectral Lines Kirchhoff's laws illustrated: Emission Absorption spectrum spectrum Slit Slit Prism Prism Cool gas (b) (c) Hot bulb (a) Slit Continuous Prism spectrum

Copyright © 2005 Pearson Prentice Hall, Inc.

Emission line spectra each element has a characteristic spectrum.

Demo: Ne, Hydrogen, ?

350

Hydrogen		
Sodium		
Helium		
Neon		
Mercury		

600 550 500 450 400 Wavelength (nm) Copyright © 2005 Pearson Prentice Hall, Inc.

650

4.2 The Formation of Spectral Lines Explaining spectral lines required a new model of the atom.

- Bohr's model of H was the first to explain the H spectrum. He built upon this knowledge:
- Atoms are the building blocks of elements.
 Atoms are made up of charged particles.

 J. Thompson had isolated the electron.

 Accelerating electrons emit E-M radiation.
 Einstein: light comes in photons
 Planck said E_{photon} = hf. (h = 6.63x10⁻³⁴ kg m²/s)
 Balmer found equation for the H emission lines:

$$\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right); n = 3, 4, \dots$$

Bohr model of H had certain allowed "orbits" for electron:

Emission photon energies correspond to energy differences between allowed levels.

Modern model has electron "cloud" rather than orbit:

Light as a particle

Light particles (photons) each have energy E: E = hf

Here, *h* is Planck's constant:

$$b = 6.63 \times 10^{-34} \text{J} \cdot \text{s}$$

Photon *Energy* can also be related to wavelength, e.g. $E=hc/\lambda = 1240 eV/\lambda$ (nm)

Light as a particle

Photoelectric effect can be understood only if light behaves like particles

Copyright © 2005 Pearson Prentice Hall, Inc.

Absorption - excitation: a photon hits the atom and its energy is used to boost an e to a higher energy level ... an excited state state 91.2 nm 21.6 nm n = 713.6 eV Balmer 656.3 nm Emission - deexcitation or decay; the e sh to a lower energy level and the atom emits at am photon. Spontaneous or stimulated. Third excited state Ionization: the atom receives so much energy

that the e- is "kicked off" of the atom.

Ionization

n = Infinity

Multielectron atoms: much more complicated spectra, many more possible states

Ionization changes energy levels

Emission lines can be used to identify atoms:

Information from spectral lines:

- Chemical composition from line strength, presence of lines
- Temperature from line strengths, presence of lines
- Radial velocity doppler shifting of all lines

- Line broadening can be due to Doppler shifting
- from thermal motion
- from rotation

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

star

Line broadening caused by higher gas pressure on the surface of the star.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

TABLE 4.1	Spectral Information Derived from
	Starlight

Observed Spectral Characteristic	Information Provided
Peak frequency or wavelength (continuous spectra only)	Temperature (Wien's law)
Lines present	Composition, temperature
Line intensities	Composition, temperature
Line width	Temperature, turbulence, rotation speed, density, magnetic field
Doppler shift	Line-of-sight velocity

Summary of Chapter 4

- Spectroscope splits light beam into component frequencies
- Kirchoff's laws describe how the 3 types of spectra can form.
- •Continuous, emission, and absorption spectra
- Both emission and absorption spectra can be observed from one gas cloud depending on line-of-sight.

Summary of Chapter 4, cont.

• Spectra can be explained using atomic models, with electrons occupying specific orbitals/energy levels.

• Emission and absorption lines result from transitions between orbitals.

• Spectra can give us information about a stars temperature, composition, rotation, radial velocity, magnetic field strength, surface gravity (pressure) \rightarrow star size.