Name: \qquad KEY
Date: \qquad

1) The mass of the Sun is $2,000,000,000,000,000,000,000,000,000,000 \mathrm{~kg}$.
a) Express this mass in scientific notation. \qquad $2.0 \times 10^{30} \mathrm{~kg}$
b) Express the Sun's mass to the nearest power of 10 . $10^{30} _\mathrm{kg}$ \qquad
c) What is the Sun's mass in units of solar masses (M
)? _1 ${ }^{-}{ }^{\circ}$ \qquad

Lengths to
Memorize:
(units of meters)
10° Human
10^{7} Earth diam
10^{9} Sun diam
10^{11} Sun dist
10^{13} Neptune
10^{16} Light year/
Dist to stars
10^{24} Supercluster 10^{26} Cosm MicroWave Bkgd
2) If the mass of the Earth is $10^{24} \mathrm{~kg}$, how much more massive is the Sun than the Earth?
a) The Sun is $\quad 6$ \qquad orders of magnitude more massive than the Earth.
b) The Sun is _a million \qquad times more massive than the Earth.

Multiplication with powers of $10: 10^{A} \times 10^{B}=10^{(A+B)}$ Division with powers of 10 :
$10^{A} \div 10^{B}=10^{(A-B)}$
3) The distance from the Earth to the supermassive black hole at the center of our Milky Way Galaxy is about 28,000 LY. How many meters is this, to the nearest power of 10?

$$
2.8 \times 10^{4} \times 10^{16}=10^{4+16}=10^{20} \mathrm{~m}
$$

4) How many Sun diameters fit between the Earth and the nearest star about 4 light years away? (Again, to the nearest power of 10.)

$$
4 \times 10^{16} / 10^{9}=10^{17-9}=10^{8} \text { Sun diameters }
$$

5) If 1 Astronomical Unit is the average distance between the Earth and the Sun, how many AU are in a Light Year (LY)? (Nearest power of 10.)
$10^{16} / 10^{11}=10^{16-11}=10^{5} \mathrm{AU} / \mathrm{LY}$
