Physics 1051. Planetary Astronomy Quiz 4 REVIEW.

Light and spectroscopy

1.	Which of these properties for waves on a string are measured in length units (e.g., meters, mm, etc)? (Circle more than one.)									
	(a) speed (b) frequency (c) amplitude (d) wavelength (e) polarization									
2.	Which type of electromagnetic radiation has the longest wavelength?									
	(a) Radio (b) visible (c) ultraviolet (d) infrared (e) gamma rays									
3.	What are the colors contained in white light, ordered from low to high frequency? (First letter only. Give at least six colors.)									
4.	Which type of electromagnetic radiation has the lowest frequency?									
	(a) Radio (b) visible (c) ultraviolet (d) infrared (e) gamma rays									
5.	Which type of electromagnetic radiation has the highest frequency?									
	(a) Radio (b) visible (c) ultraviolet (d) infrared (e) gamma rays									
6.	Name a behavior of light which is characteristic of waves but not particles.									
7.	Which of these is a type of electromagnetic radiation which is harmful to living tissues? (Circle one)									
	(a) gamma rays b) infrared c) radio d) visible light e) cosmic rays									
8.	The temperature of an ideal blackbody can be measured from the its spectrum.									
	(a) emission lines in									
	(b) absorption lines in									
	(c) peak intensity of									
	(d) wavelength of peak intensity for(e) width of absorption lines in									
9.	The pitch of a train horn will drop as the train passes because of the effect.									

10.	The spectrum of a star moving away from us will be compared to a similar star at rest.
	(a) redshifted(b) blueshifted
	(c) neither redshifted or blueshifted
	(d) brighter
	(e) dimmer
11.	The spectrum of a star moving toward us will be compared to a similar star at rest.
	(a) redshifted
	(b) blueshifted
	(c) neither redshifted or blueshifted
	(d) brighter
	(e) dimmer
12.	The amount of radiation leaving a blackbody depends on temperature raised to the power.
	(a) 1st (b) 2nd (c) 3rd (d) 4th (e) 5th
13.	Varying the current flowing through a lightbulb will change the filaments temperature and allow one to demonstrate
	(a) Wien's law (b) Stefan's Law (c) Kirchoff's laws (d) Wien's law and Stefan's law (e) Newton's law
1	Light and telescopes
(NO	ΓE: Only those with ** are important.)
1.	The diameter of the pupil is about 0.2 inches. How many times fainter than the naked-eye limit can be seen with a 1-inch diameter telescope? (Hint: LGP)
	(a) 2 times (b) 4 times (c) 5 times (d) 25 times
2.	The Light Gathering Power (LGP) of a telescope of mirror diameter D is proportional to
	(a) D (b) D^2 (c) $1/D$ (d) the eye's pupil diameter
3.	The following are designs of reflecting telescopes except the

	(a)	refracto	or ((b) New	tonian	(c) Pr	ime focu	us (d)) Casse	grain	(e) C	oude	
4.		is the er than				can see	using a	telescope	e with	a lens o	diamete	r 10 ti	imes
	(a)	1.0	(b) -6.	0 (c) 4.0	(d) 6.0	(e)) 11.0					
5.	The v	various t	ypes of	freflecti	ng telesc	opes can	be distin	nguished	by the	position	n of thei	r	·
	\ /	focal pla clock dr		(b) pri	mary mi	rror	(c) secor	ndary mi	rror	(d) fin	der scop	oes	(e)
6.	The r	esolutio	on of a	telescop	e impro	ves as yo	u increa	se	<u> </u>				
	. ,	the mag double s			. ,	e seconda length	-			` '		nce to	the
7.	** In		(lesign o	f reflecti	ing telesc	cope, the	ere is a	whole t	hrough	the cer	nter of	the
	(a)	Cassegra	ain	(b) ref	fractor	(c) P	rime	(d) Cou	ıdé	(e) Ne	wtonian	L	
8.	** Di	ffraction	n and i	refractio	n are ex	amples o	f	_					
	` '	_	_		`	tricks (e) energ		re (c)	wave j	propert	ies of lig	ght	(d)
9.	Light	comes	in disc	rete 'pie	eces' of e	nergy ca	lled						
	(a) .	Joules	(b)	keppers	(c)	Planck's	(d) 1	photons	(e)	bullets			
10.		esides vi n's atmo		_	~ -	electron	nagnetic	radiation	n which	n is leas	t absorb	oed by	the
	(a) 1	radio wa	aves	(b) X-	rays	(c) gamr	na-rays	(d) c	osmic-r	ays	(e) infr	ared w	aves
11.	** W	hich wa	ve pro	perty of	light is	often me	asured i	n nanom	eters a	nd is re	elated to	color	?
	(a)	frequenc	ey	(b) ener	gy ((c) wavele	ength	(d) c, t	the spe	ed of lig	ght (e) reds	shift
\mathbf{T}	he Su	ın											
it is 1	related	l to assi	gned re	eading o	or homev	t yet been vork ques n's surfac	stions.			may be	asked o	n a qu	iz if

(d) 5800 K

(e) 10,000 K

(c) 3800 K

(a) 600 K

(b) 2000 K

2.	This layer of the Sun's atmosphere includes gas with temperatures ranging from 15,000 K to about 1,000,000 K.
	(a) photosphere (b) radiative zone (c) transition region (d) chromosphere (e) convective zone
3.	Above the radiative zone of the Sun is a zone where heat is transferred upward by bulk motion of gas, a process called
	(a) conduction (b) convection (c) radiation (d) projection (e) reflection
4.	The Sun generates all of its energy in a region called the
	(a) core (b) fun zone (c) radiative zone (d) convective zone (e) nucleus
5.	The most powerful, short-lived explosions on the Sun's surface are called
	(a) coronal holes (b) flares (c) prominances (d) filaments (e) fusion
6.	Which of these surface features on the Sun is the most short-lived?
	(a) sunspots (b) flares (c) supergranules (d) prominances (e) coronal holes
7.	When a gas is maintaining a stable, spherical shape, gravity is balanced by
	(a) temperature (b) pressure (c) density (d) frictional forces (e) electrical sources
8.	Evidence for convection on the Sun is seen in bubble-like features about $1000~\mathrm{km}$ across called
	(a) flares (b) Texans (c) granules (d) prominences (e) sunspots
9.	The inhibition (prevention) of convection in regions of strong magnetic fields gives rise to
	(a) sunspots (b) prominences (c) flares (d) granules (e) the sunspot cycle
10.	The Sun's chromosphere is more difficult to observe (fainter) than the photosphere because it is
	(a) more colorful (b) cooler (c) farther away (d) more diffuse (less dense) (e) eclipsed by the Sun
11.	What is the deepest layer that we can see of the Sun in visible wavelengths?
	(a) corona (b) chromosphere (c) photosphere (d) convective zone (e) radiative zone
12.	Which layer of the Sun emits most of the photons that reach our eyes directly?
	(a) corona (b) chromosphere (c) photosphere (d) convective zone (e) radiative zone

13.	T or F. The density and temperature in the solar corona are much higher than in the photosphere.
14.	Name a region of the Sun that produces an emission line spectrum, in accordance with Kirchoff's laws.
15.	In what surface feature of the Sun would you expect to observe absorption lines that are split into 3 lines because of a strong magnetic field?
16.	The nearest star to the Earth can be easily resolved by telescopes. It is called
17.	What provides the most direct evidence of nuclear reactions currently occuring in the Sun's core?
	(a) visible light emitted from the core
	(b) gamma rays emitted from the core
	(c) x-rays
	(d) helioseismic vibrations on the surface
	(e) neutrinos emitted from the core
18.	The <i>number</i> of sunspots on the Sun increases and decreases with a period of about
19.	The latitude of sunspots on the Sun increases and decreases with a period of about
20.	After one, 11 year sunspot cycle, things are back to the starting state except that the of the sunspot pairs is reversed.
21.	The CME's from the Sun can lead to on Earth.
	(a) coronas (b) annihilation (c) auroras (d) migraines (e) helioseismology
22.	What is the name of the particular nuclear fusion process that provides most of the Sun's power?
23.	T or F. Since neutrinos can pass through light years of lead without obstruction, we can't construct a neutrino detector on Earth.