

Lecture Outlines

 Chapter 6Astronomy Today

7th Edition

Chaisson/McMillan

Chapter 6 The Solar System

Units of Chapter 6

6.1 An Inventory of the Solar System
6.2 Measuring the Planets
6.3 The Overall Layout of the Solar System
6.4 Terrestrial and Jovian Planets
6.5 Interplanetary Matter

Units of Chapter 6 (cont.)

6.6 Spacecraft Exploration of the Solar System

Gravitational "Slingshots"
6.7 How Did the Solar System Form?

Angular Momentum

6.1 An Inventory of the Solar System

Early astronomers knew of the stars, the 7 luminaries, comets, and meteors.

The Copernican Revolution gave us the correct ordering and spacing of the planets (in AU). The telescope led to measuring:
the size of AU
stellar parallax aberration of starlight and lots of new objects ...

© 2011 Pearson Education, Inc.

6.1 An Inventory of the Solar System

Now known:
-Stars: 1
-Planets: 8 (added Uranus and Neptune)

- Moons: 166 (2011) $\rightarrow 205$ (2021, around planets only)
- Asteroids: 8 bigger than 300 km, 10^{6} over 1 km.
- Kuiper Belt Objects: 100 bigger than 300 km
-+ many small asteroids, KBOs, comets, and meteoroids (<100m).
- "Dwarf Planets: Ceres + >3 big KBOs, Pluto
- Interplanetary: dust (zodiacal), solar wind

6.2 Measuring the Planets

TABLE 6.1 Properties of Some Solar System Objects

Object	Orbital Semimajor Axis (AU)	Orbital Period (Earth Years)	Mass (Earth Masses)	Radius (Earth Radii)	Number Rotation of Known Satellites Period * (days)	Average Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right) \quad\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Mercury	0.39	0.24	0.055	0.38	$0 \quad 59$	54005.4
Venus	0.72	0.62	0.82	0.95	$0 \quad-243$	52005.2
Earth	1.0	1.0	1.0	1.0	$1 \quad 1.0$	$5500 \quad 5.5$
Moon	-	-	0.012	0.27	27.3	$3300 \quad 3.3$
Mars	1.52	1.9	0.11	0.53	21.0	$3900 \quad 3.9$
Ceres (asteroid)	2.8	4.7	0.00015	0.073	$0 \quad 0.38$	$2700 \quad 2.7$
Jupiter	5.2	11.9	318	11.2	6379 (2019) 0.41	$1300 \quad 1.3$
Saturn	9.5	29.4	95	9.5	5682 (2019) 0.44	$700-7$
Uranus	19.2	84	15	4.0	$27 \quad-0.72$	$1300 \quad 1.3$
Neptune	30.1	164	17	3.9	1314 (2019) 0.67	$1600 \quad 1.6$
Pluto (Kuiper belt object)	39.5	248	0.002	0.2	35 (2019)-6.4	$2100 \quad 2.1$
Hale-Bopp (comet)	180	2400	1.0×10^{-9}	0.004	0.47	$100 \quad 0.1$
Sun	-	-	332,000	109	- 25.8	$1400 \quad 1.4$

*A negative rotation period indicates retrograde (backward) rotation relative to the sense in which all planets orbit the Sun.
(c) 2011 Pearson Education, Inc.
© 2011 Pearson Education, Inc.

6.2 Measuring the Planets

- Orbital period found from synodic period
- Distance from Sun from Kepler's $3^{\text {rd }}$ Iaw
- Radius known from angular size and distance
- Masses from Newton's laws / Kepler's laws
- Rotation period by watching surface features
- Density can be calculated knowing radius and mass
-Uncompressed density: the density of a planet if gravity were not compressing it

6.3 The Overall Layout of the Solar System

All orbits but Mercury's are close to the same plane

6.3 The Overall Layout of the Solar System

\author{

Because the planet's orbits are close to being in a plane, it is possible for them to appear in a straight line as viewed from Earth.

}
-- Saturn

- Mars
- - Venus
(Photograph was taken in April 2002.)

*A 1974 book, "The Jupiter Effect", predicted end-of-world destruction in 1982 due to a similar alignment.

6.4 Terrestrial and Jovian Planets

In this picture of the eight planets and the Sun, some of the differences between the four terrestrial and four Jovian planets are clear.

Terrestrials:

- Are smaller
- Are closer to the Sun
- Possess fewer moons \& rings
- Have thinner atmospheres
- Are denser
- Have lower masses
- Have higher surface temperatures
- Are composed more of high $\mathrm{T}_{\text {melt }}$ minerals
(C) 2011 Pearson Education, Inc.

6.4 Terrestrial and Jovian Planets

 Differences among the terrestrial planets:- All have atmospheres, but they are very different; surface conditions vary as well
- Only Earth has oxygen in its atmosphere, liquid water on its surface, and life
- Earth and Mars spin at about the same rate; Mercury and Venus rotate much more slowly, Venus also rotates retrograde
- Only Earth and Mars have moons
- Only Earth and Mercury have magnetic fields

6.4 Terrestrial and Jovian Planets

Pluto was always the oddball. It is on the inner edge of the Kuiper Belt. $a=39$ AU. Trans-neptunian objects found (Quauar, Makemake, Sedna) of nearly the same size.
Then, Eris was found, even bigger than Pluto and has Moon (Dysnomia).
Back in my day

6.4 Terrestrial and Jovian Planets

Pluto was visited by New Horizons on July 14, 2015. It is bigger than Eris after all! Has 5 moons!

Pluto

Charon

Nix

6.5 Interplanetary Matter

Asteroids and meteoroids have rocky composition. (Meteoroids are smaller than 100 m.)

Most asteroids $2<a<3.5$ AU.

Asteroid Main-Belt Distribution Kirkwood Gaps

NEA $=$ Near Earth Asteroids (also PHA) ${ }^{\text {Sem }}$-maior Axis (dal danger.

6.5 Interplanetary Matter

Asteroids! Biggest asteroid (Ceres ${ }^{\dagger}$) is spherical and differentiated.

Most are potato shaped. Ex) Asteroid Eros is 34 km long*

Ceres' layers

© 2011 Pe, Visited by Dawn in 2018. *Visited by NEAR in 2001.

6.5 Interplanetary Matter

Comets are "dirty snowballs"
Comet Hale-Bopp
Had biggest nucleus (37 mi).
Visible to eye in 1997.
Period ~ 2530 years.
Comet BernardinelliBernstein Is now the largest known at $60-120$ miles. Will be closest ($\sim 11 \mathrm{AU}$) in 2031.

6.5 Interplanetary Matter

Kuiper Belt Objects are beyond Neptune.

(C) 2011 Pearson Educ

6.6 Spacecraft Exploration of the Solar System

Soviet Venera probes landed on Venus from 1970 to 1978

© 2011 Pearson Education, Inc.
© 2011 Pearson Education, Inc.

6.6 Spacecraft Exploration of the Solar System

The most recent Venus expedition from the United States was the Magellan orbiter, 1990-1994.

ESAs latest:
Venus Express, 2005-2015.

See Globe of Venus

6.6 Spacecraft Exploration of the Solar System

Viking landers arrived at Mars in 1976

© 2011 Pearson Education, Inc.

6.6 Spacecraft Exploration of the Solar System

InSight lander landed on Mars in Nov. 2018. Has seismometer.

© 2011 Pearson Education, Inc.

6.6 Spacecraft Exploration of the Solar System

Sojourner rover was deployed on Mars in 1997

Discovery 6-1: Gravitational "Slingshots"

Gravitational "slingshots" can change direction of spacecraft, and also accelerate it

6.6 Spacecraft Exploration of the Solar System

Pioneer and Voyager flew through through asteroid belt on way to outer solar system. This is Voyager.

6.6 Spacecraft Exploration of the Solar System

Pioneer and Voyager launch dates and trajectories. Only 5 craft have reached escape velocity from the solar system!

Outer Solar System Probes
Pioneer-10: 3 March 1972
Pioneer 11: 6 April, 1973
Voyager 2: 20 August 1977
Voyager
Voyager I: 5 September 1977

6.6 Spacecraft Exploration of the Solar System

Cassini-Huygens mission arrived at Saturn in 2004.

It has returned many spectacular images.

6.7 How Did the Solar System Form?

Nebular theory:

Cloud of gas and dust contracts due to gravity. Contracts more easily along spin axis - forms disk. Conservation of angular momentum means it spins faster and faster as it contracts.

(a)
(b)

(c)
© 2011 Pearson Education, Inc.
Planets form out of disk.
© 2011 Pearson Education, Inc.

6.5 Interplanetary Matter

Asteroids! Biggest asteroid (Ceres ${ }^{\dagger}$) is spherical and differentiated.

Most are potato shaped. Ex) Asteroid Eros is 34 km long*

Ceres' layers

More Precisely 6-1: Angular Momentum

Conservation of angular momentum says that product of radius and rotation rate must be constant. $\quad L \sim M R^{2} \omega$ (where $\omega=$ spin rate)

Large radius

Small radius

Rapid rotation

0.5 arcsec

10 AU
dust disk
in J band ($1.3 \mu \mathrm{~m}$)

giant planet β Pic b

seen in L^{\prime} band $(3.8 \mu \mathrm{~m})$

Infrared view of the planetary system around the young star β Pictoris composed with images taken at the European Southern Observatory telescopes in Chile:

- the 3.6-m telescope + ADONIS instrument in La Silla (Mouillet et al. 1997)
- the Very Large Telescope + NACO instrument in Paranal (Lagrange et al. 2009-2010)

6.7 How Did the Solar System Form?

Dust is important ingredient in the solar nebula.

1) It allows nebula to
cool and contract.
2) It provides nuclei for condensation and accretion onto small chunks.

$\sim_{i}^{\sim} \sim_{V}$

Dust can be seen in interstellar clouds as shown here.

6.7 How Did the Solar System Form?

The condensation

 sequence is the way the composition of the dust grains in the solar nebula changed with distance from the Sun.High melting point materials close to Sun, high and low melting point material
 far from Sun.

6.7 How Did the Solar System Form?

"Frost line"

Hydrogen-helium gas nebula

Protosun
Accreting rocky planetesimals

Accreting rock-ice
planetesimals

Once planets got big enough, they could gravitationally capture H and He gas from solar nebula.

6.7 How Did the Solar System Form?

Hierarchical formation terms
Interstellar grains < 1 micrometer

Processes
Bonds, Molecular forces

Protoplanetary disk grains >~ 1 micrometer

Aggregates, fractal aggregates
Pebbles
pebble+gas swarms
Planetesimals
Protoplanets
"Static cling",
Stickiness
Slow collisions,
Fast collisions
Gravity + collisions

+ accretion of gas

6.7 How did the Solar System Form?

More than 3826 extrasolar planets have been confirmed! (4717 Kepler candidates)*

51 Pegasi, the first exoplanet discovered.
Artists conception, from Wikipedia.

> The diversity of these new systems has required more sophisticated theories for the formation of planet systems.

> Ex) Big planets with eccentric orbits found.

6.7 How did the Solar System Form?
 Mass - Period Distribution

Exoplanet properties

Summary of Chapter 6

- Solar system consists of Sun and everything orbiting it
- Asteroids are rocky, and most orbit between orbits of Mars and Jupiter
- Comets are icy and are believed to have formed early in the solar system's life
- Major planets orbit Sun in same sense, and all but Venus rotate in that sense as well
- Planetary orbits lie almost in the same plane

Summary of Chapter 6 (cont.)

- Four inner planets—terrestrial planets—are rocky, small, and dense
- Four outer planets-jovian planets—are gaseous and large
- Nebular theory of solar system formation: cloud of gas and dust gradually collapsed under its own gravity, spinning faster as it shrank
- Condensation theory says dust grains acted as condensation nuclei, beginning formation of larger objects

